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ABSTRACT

A slot cut in the wall of a hollow waveguide forms an interesting and
useful type of radiator of electromagnetic energy. The slots which are dis-
cussed in this report are resonant or nearly resonant; that is, the slots are
approximately one-half wavelength long. By positioning a series of these
slots along a length of waveguide, a linear array antenna can be formed which
has excellent electrical characteristics and which has mechanical advantag .s
over other types of antennas. To design such an array, the radiation and im-~
pedance characteristics of the individual slots must be known. It is one pur-~
pose of this report (Chapter II) to present in complete form the theory of
operation of individual slot radiators, methods of measuring their character-
istics, and an extensive collection of useful slot design data. The second
portion of this report (Chapter III) presents some of the theoretical and ex-
perimental aspects of arrays which use slot radiators as exciting elements.
Much of the data presented have not been previously published but have ap-
peared in the form of laboratory technical memoranda. An aitempt has been

made to correlate and evaluate these data.
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WAVEGUIDE SLOT ARRAY DESIGN

1. INTRODUCTION

Arrays of slots cut into the walls of waveguides form an interesting -
and useful type of antenna, These waveguide slot arrays evolved naturally
as the result of two important developments in the earsly 1940's. The first
was the development of practical microwave generators; the second was the
need for highly directive and shaped beam antennas for radar applications.
With microwave generators available, the use of hollow waveguide trans-
mission lines became feasible and, because of their low losses, desirable.
Since the aperture distribution (and consequently the radiation pattern) can
be ' sntrolled quite accurately in an array of radiating elements, it was felt
t'.at highly directive and shaped beam antennas could be produced more easily
by antenna arrays than by certain optical-type antennas such as lenses, horns,
or point sources feeding reflectors.

Dipoles, probe-coupled tc the field in a rectangular waveguide, were
first used as the radiating elements in these arrays. Generally, a linear
array of these dipoles was used in connection with a cylindrical reflector for
search radar antennas. The array was designezd to give a narrow beam in
azimuth and the eflector was shaped to give a fan beam in elevation. These
dipole arrays, h. ver, exhibited a number of undesirable characteristics:

1) It was difficult to adjust the probe coupling accurately.

2) The probe-fed dipole presented a complex impedance to the
wave in the guide, which resulted in low efficiency.
3) The stem of the dipole radiated, producing cross polarization.

4) At high frequencies, the electrical design of the dipoles did
not permit rugged mechanical qualities.
5) The cost of producing these arrays was excessive.

During the early years of World War II, W. H. Watson recognized
the fact that a slot cut into the wall of a waveguide would radiate if positioned
so as to interrupt the wall currents on the guide. He and his co-workers
(E. W. Guptill, J. ¥. Dodds, R. H. Johnston, M. Telford, and F. R. Terroux)
at McGill University later succeeded in developing techniques for designing
slot arrays in rectangular waveguide. Since Watson's early investigations, a
good deal of theoretical and experimental work has been done on slot radiators
in rectangular and other types of guide. Slot antennas are now finding applica-
tions as zero-drag antennas which can be fairedinto the skin of high speed air-
craft.

Watson's work is described in his book87 and in his paper88 in the
Journal of the Institution of Electrical Engineers. Therefore, emphasis in this
report has been placed on more recent work which may not be readily available
in the public literature. In particuiar, most of the slot studies conducted at the
Microwave Laboratory of the Hughes Aircraft Company will be outlined.




Section 2 contains a description oi the characteristics of the slot
radiator--the slot radiation pattern (or element factor), slot impedance
and techniques for measuring it, and available design data on slots. In
Section 3 are described the general characteristics of the slot array,
methods for determining the proper excitation coefficients of the elements
to produce a specified radiation pattern, techniques for producing this
aperture distribution on the slot array, and finally some practical con-
siderations appropriate to slot arrays.

P R Al

TR




[

;"“5& T e e

- e gy C e g e pE

T R NI TP A g ™ ST, e O, S LY

e

S S

ﬁ

2. SLOT RADIATORS

Slot radiators are the building blocks that make up a slot array,
and,as such, their characteristics must be known before an array can be
designed. In the first section the radiation patterns of slot radiators are
discussed; techniques for measuring slot impedances are described next;
and in the last section design data for various types of slets are presented.

2.1 THE ELEMENT FACTOR

It is wc'l known in antenna theory that, for certain types of arrays,
the mathematical equation which describes the radiation pattern can be
factored into two parts: the element factor and the space (or array) factor.
The element factor is nothing more than the radiation pattern of a single
element of the array {(assuming no mutual coupling33), and the space factor
is the radiation pattern of an array of isotropic radiators that are excited
by the same currents as the elements which comprise the actual array,.
The term radiation pattern, as it is used in this report, means the ampli-
tude and phase variation of the radiated field at the surface of a very large
sphere centered at the antenna. Since amplitude and phase are of interest,
it is convenient to think of the radiation pattern as being complex. Thus,
in the equation relating antenna pattern, R(9, ¢}, element factor, E(0, §),
and space factor, S(@,§),

R(6, ) = E(6,¢) S(0,9) (1)

R, E, and S are not only space vectors but are also complex functions. It
is also true that the antenna power pattern can be factored; thus,

|R(e.9 |2 = |E@.0) | . |560.9 |2 (2)

Since the array designer is generally interested in the power
pattern rather than the field pattern, the phase of the element factor is not
of great importance. However, it should be emphasized that equations (1)
and (2) hold only for a special class of arrays known as '""parallel arrays."
Parallel arrays are characterized by the fact that any element (or element
pattern) may be made to coincide with any other by translation without rota-
tion. From another pouint of view, it can be said that, for a parallel array,
the far field pattern for any element in its regular position in the array and
radiating by itself is similar to the far field pattern for any other element in
the array except for a phase difference which depends only on the element
spacing and current phases.

Fortunately, the majority of practical arrays are of the parallel
variety, including for all practical purposes linear arrays of slots cut in
the same face of a waveguide. Arrays of slots on the periphery of con-
ducting cylinders or tangent to curves on a flat surface, however, are not
parallel arrays. For these nonparallel types of array, the amplitude and
phase of the element factor are both important for analyzing or synthesizing
an arrz r patterh whether the designer is interested in the power paitern or




in the field pattern. The reason is that the radiation pattern of an array
element does not ag:pear as a factor in the mathematical formulation for
the array patt:ern8 Consequently, both amplitude and phase data for
the element factor are presented whenever they are available.

2.1.1 The Electromagnetic Babinet's Principle

It is often true that accurate analogies simplify the solution of un-
familiar and complex problems by allowing the investigator to solve them in
terms of their familiar analogs. The eleciromagnetic Babinet's Principle
is such a tool; it can be extended to describe the dual relationship between
a radiating slot and 'he familiar dipole.

Babinet's Principle is a theorem in physical optics which can be
stated as follows:

Consider a thin plane screen which is '"b* ck" (that
is, nonreflecting) and infinite in extent Juppose
now that apertures of any size, shape, .r distribu-
tion are cut in the screen, and that in front of the
screen there are one or more optical sources.

Let the screen roduced by interchanging holes and
obstructions be called the complementary screen.
Then Babinet's Principle states that the optical dis-
turbances at any point behind the plane of each oi
two complementary screens, exposed in turn to the
same incident waves, would. if superposed, prs-
auce the same effect at the given point as if no screen
were present.

For example, a thin nonreflecting disc, interposed between a lamp and a
white screen, would cast a shadow pattern on the screen consisting of a
small black shadow directly behind the disc, a grey area surrounding the
shadow which is produced by diffraction at the edges of the disc, and a
white area which is exposed to the direct rays from the lamp. If, now,
the disc is replaced by a large nonreflecting screen containing an aperture
identical with the disc in which the aperture occupies the former position
of the disc, the shadow pattern will be just the reverse of that previously
described; and-if the two patterns were superposed, the image would be
white as though the nonreflecting screen were not present at all.

In electromagnetism (as opposed to physical optics), however,

. the propagation of scalar waves or the use of nonreflecting screens is

not considered, as has been done above. The description of electromag-
netic waves in terms of an electric and a magnetic vector which obey cer-
tain well known boundary conditions at a perfectly conducting surface must
be taken into account if Babinet's Principle is to be apglied to electromag-
netic waves at microwave frequencies. H. G. Booker' has succeeded in
restating the theorem for the purpose of deducing some of the properties of
a resonant slot in an infinite ground plane from known properties of a
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complementary strip dipole,* and E. T. Copson14 has rigorously proved
the electromagnetic Babinet's Principle.

Booker observed that Babinet's Principle in optics would hold

for electromagnetisin provided that, in passing from one screen to its
— -t - -

complement, one also made the transformation Ei—-» H; R I-Ii —_ - E:

in the incident fields. The mathematical statement of the electromagnetic

Babinet's Principle (in rationalized MKS units) is:

Let the electromagnetic field fi’ .ﬁi be incident in

z >0 on a perfectly conducting screen in the plane
z = 0; the holes in the screen are lenoted by Rl’

the metal of the screen by R,. Let the total field

in 2z << 0 be E, H. Further, let the complementary
-

electromagnetic field El ) ?I; be incident inz >0

on the complementary perfectly conducting screen
in the plane z = 0; the holes in the screen are RZ

and the metal R,. Let the total field in z << 0 be

BB :
Then, if
kH] = E
- - (3)
kE|=-F H
and

k = one ohm (to keep the equations dimensionally
consistent);

Babinet's Principle is:

by -l ~—

E+kH'=Ei

. = A (4)
H-:kE—Hi

for all z< 0 and

—t -b' -t
E-kH' =E_
- - - (5)
H+ikf=Hr

i

*Booker assumes that a thin strip of width b (small compared with a wave-
length) behaves like a circular wire of diameter b/2 from the point of view
of frequency selectiviiy.
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for all z > 0, where Er’ Hr is the reflected field

for a completely closed screen.

As an application of Babinet's Principle, the radiation from a
strip dipole fed at the center by a parallel wire transmission line can be
compared with a complementary slot antenna. (See arrangement illus-
trated in Figure II-1.) If the parallel wire line is ideal (an infinitesimal
distance between wires), then the line when open-circuited or short-cir-
cuited will not radiate. In other words, if this line terminates in free
space or in an infinite ground plane, the incident and reflected fields,
respectively, exter' o' to the parallel wire line will be zero; or, in terms
of equations (4) and (5), E.=H, =0and E_=H_=0. InFigure lI-1B the

plane containing the transmission line has been rotated 90 degrees from
the position illustrated in Figure Ii-1A to conform to the conditions of
eguation (3). Applying equations (4) and {5), in which the primed fields
refer to the slot,

0 0 (6)
H,=-SkE
" g
for: z> 0, and
1]
E = - kHy
H, =% KE, M
g9 u g

for z <0. Thus, the radiation pattern of a center-fed slot antenna is simply
the pattern of the complementary center-fed dipole with the polarization
rotated 90 degrees.

2.1.2 Infinite Ground Plane

A slot in a ground plane can be excited in a number of ways.
Feeding the slot at the center by a two-wire line is one method; another is
to cut a slot in a waveguide. A study of the latter technique is the purpose
of this report.

It is generally assumed that the magnetic current distribution in
a radiating slot is sinusoidal, just as it is assumed that the electric current
distribution on a dipole is sinusoidal. In both cases, calculations based on
this assumption are supported by experiment.

Since the distribution in a slot cut in a waveguide is assumed to be
the same as that for a slot in an infinitc ground plane and fed by a parallel
wire line, the electromagnetic Babinet's Principle can be used to deduce
the pattern of a waveguide slot radiating into an infinite ground plane. In
fact, the manner in which the slot is fed is irrelevant as far as its radiation
pattern is concerned, as long as the sirusoidal assumption holds. Thus,
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the pattern of a waveguide slot in an infinite ground plane is the same as
the pattern of the complementary center-fed strip dipole with the excep-

- —
tion that the E and H vectors are rotated 90 degrees. Stated another way,

- - =2 it
E for the dipole becomes H for the slot and H for the dipole becomes -E

fo%;.he slot. Thus, the far field pattern of a narrow resonant slot is given
by

¢ V _(m) sin =8 : cos (BL) cos 0)
H,(9) = j(;)l/z "R L R [ STIZI_O ] » (8)

m=1, 3, 5. ...

or
mn . /mn
H (0) = (e_)l/?. Vo(m) cos — _jkR sin (T cos 0) o)
0 m Znk ’ sin 0 ?
m = Z, 4: 6; PSP
and
EQW) = constant for a given R. (10)

In these equations

Vo(m) = the value of the voltage at voltage maximum

L = m) /2 = the length of the slot

R = the distance from the center of the slot to an observer
in space ‘

0 = the angle measured from the longitudinal axis of the

slot to the observer.

From equations (8), (9) and (10), it is apparent that the surfaces of con-
stant R are equiphase surfaces (provided that the amplitude is both posi-
tive and negative).

A comparison of radiation patterns for the "half-wave dipole" and
complementary "half-wave slot" (m = 1) is illustrated in Figure II-2. In
the event that the slot can radiate on only one side of the ground plane, the
dashed portion of the pattern does not exist. This condition is the case of
interest fcr waveguide slot radiators.

2.1.3 Finite Ground Plane

The fields at the surface of the ground plane inte which a slot
radiates must obey the boundary conditions imposed by Maxwell's equations.
As a result, the radiation pattern for a slot is a function of its ground plane
configuration.
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The H-plane pattern for an ideal slot in a finite ground plane is
practically the same as that for a slot in an infinite ground plane since the
fields vanish in the 0 = 0 and @ = n directions. The E-plane pattern, on
the other hand, is modified due to reflections at the edges of the ground
plane. The resultant pattern will consist of undulations superimposed on
the original semicircular pattern. The angular location of the maxima
and minima of these undulations can be determined by assuming that the
far field is produced by three sources, one at the slot and one at each edge
of the ground plane”®> ~ These angles are given by

ni
- = arc cos —
¢ L

{11)

where n is an integer and L is the dimension of the ground plane normal to
the slot axis. The successive deterioration of the paitern as L becomes
small is shown in Figure II-3. It can be seen from Figure II-3 that as L
becomes large, the undulations become more numerous but their magni-
tudes decrease, so that for very long ground planes the pattern approaches
a semicircular shape.

2.1.4 Rectangular Waveguide

L]
Radiating slots can be located at a number of different positions
on a rectangular waveguide. If no auxiliary ground plane is provided, the
shape of the radiation pattern will depend on the orientation of the slot with
respect to the edges and faces of the guide. A cylinder of rectangular cross
section does not in general lend itself to mathematical description so that
tbe pattern of a slot in a rectarngular waveguide cannot be readily predicieu.

A measured E-plane pattern for a longitudinally oriented slot in the
broad face of the guide is shown in Figure II-4. The backward lobe is pro-
duced by reflections from the two lower edges of the guide. As the slot is
displaced from the centerline of the broad face, the maximum of the pattern
tilts off the nor 1, as shown in Figure II-5, due to the asymmetry of the
currents on the guide face. '

2.1.5 Slot Pairs

A slot pair is defined as a radiating element consisting of two
equally excited slots located diametrically opposite each other on the sur-
face of a cylinder.

If the electric vectors across the slots point in the same direc-
tion proceeding around the cylinder, the slots are said to be "in-phase. "
The theoretical E-plane pattern for an in-phase longitudinal slot pair on a
thin ell.'bptic cylinder with its major axis less than two wavelengths is a

irc.a. Mathematical and computational difficulties have prevented re-
liable prediction of results for larger sizes of elliptic cross section. The
measured patterns of in-phase slot pairs on a thin elliptic cylinder taken
from the work of Carterl0 are shown in Figure II-6. These patterns illus-
trate the changes which occur as the cylinder thickness increases.
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if the electric ver-.o.5 across the slots point in opposite direc-
tions proceeding around the cylinder, the slots are said to be in 'phase
“opposition." A plane cord:cting sheet with a slot opening on both sides
is the equivalent of .. *\ .n elliptic cylinder with slots in phase opposition.
If the sheet is infinite in extent, the E-plane pattern is a circle. For
finite thin elliptic cylinders (or finite sheets), however, the pattern has
a null in the direction of the major axis of the eiliptic cross sections, a
fact which can be verified by applying the simple boundary conditions of
Maxwell's equations. Carter observed that for small elliptic cylinders
the E-plane patterns are similar to the patterns of wire dipoles oriented
in the direction of the major axis and having a corresponding length.
Figure II-7A illustrates the measured E-plane patterns for a thin cylinder
and Figure II-7B, the patterns for a thick cylinder. The difference in
some of these patterns when compared with the patterns of the corres-
ponding wire dipoles is due to the fact that the current distribution on the
elliptic cylinder is far from sinusoidal. The approximation, however, is
useful for small cylinders.

The comments made above for elliptic cylinders hold approxi-
mately for other shapes such as flat ground planes, cylinders of rectangu-
lar cross section, and aircraft wings and stabilizers.

2.1.6 Circular Cylinders

Much theoretical work has been done on the radiation from axial
and circamferential slots in infinite circular cylinders. (Referer s 3,
46, 47, 49, 50, 62, 65-67.) However, no attempt to evaluate or assemble
the results of these investigations will be made here.

The solutions for the far fields are generally harmonic series of
integer order Hankel functions, which converge rapidly for sufficiently
small cylinders. However, for cylinders which have a circumference
greater than approximately 12 wavelengtks, the convergence is very slow
and the computation tedious. Furthermore, tabulations of the Hankel func-
tion are not complete. Simplified egcfressions for certain regions of cylin-
der size are presently being sought

Bailin3 has applied the equations of Silver and Saunders65 to the
special cases of a narrow circumferential half-wave slot and a narrow axial
half-wave slot. From these special equations, Bailin has calculated a num-
ber of radiation patterns for slots on a 12 and an 8 wavelength circumference
cylinder. Figure Ii-8 is the 08 = 30 degrees pattern for a circumferential
slot. Eg is the principal component and E the cross-polarized component;

both amplitude and phase are shown. The cross polarization is due to
asymmetry in the current patiern on the cylinder when viewed in planes other
than the 0 = 90 degrees plane. Figures II-9 and 1I-10 show the principal com-
ponent and cross-polarized component patterns respectively, for different
values of Q.

Figure II-11 shows the deterioration ~f the E-plane pattern as a

function of @ for the axial slot. For this slot Eg = 0. Figures I[[-12 and
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1I-13 describe the H-plane patternus in the % = 180 degrees and % = 0 degree
planes for an 8 and a 12 wavelength circumierence cylinder. For these
large cylinders the pattern at §f = 0 is very nearly given by the radiation
field of a half-wave dipole which is indicated by the dashed lines.

The patterns in Figures II-8 through II-13 are for slots in an
infinitely long cylinder and it is to be expected that a finite cylinder will
exhibit a somewhat modified pattern.

2.1.7 Elliptic Cylinder

The circular cylinder is a special case of the elliptic cylinder;
however, the problem of determining the radiation fields for a slot in an
elliptic cylinder is a good deal more difficult. On the otler hand, the
elliptic cylinder is a good approximation to rectangular waveguide and is
better adapted to mathematical treatment than rectangular guide.

The results of investigations on elliptic cylinders are too compli-
cated to be presented here, and as in the previous section the reader is

directed to the appropriate references.lo’ 68, 85 The applicability of the
theoretical solutions depends on the size of the cylinder with respect to

the wavelength and the eccentricity of the elliptic cross section. A large
number of measured and theoretical patterns for a variety of elliptic cross
sections and slot locations have been published. 10 The largest cylinder
considered, however, had a maximum dimension of 2 wavelengths. The
various slot configurations considered are a single slot at the vertex of

the ellipse, an in-phase slot pair with slots located on opposite broad sides
of the ellipse, a single sl.t in the side,and a clot pair in phase opposition.

Sinclair68 and Taylor85 show that in the equatorial plane the radi-
ation pattern of an infinite axial slot is identical with that of a finite slot.
This fact is useful in applying theoretical data (which is often for infinite
slots) to the practical case of resonant slots.

2.1.8 The Effect of Dielectric Covers

Dielectric covers are often used to protect the slots and waveguide
from the weather or to allow the waveguide system to be pressurized. If
the covers are thin, the radiation pattern will not differ noticeably from that
of the uncovered slot. On the other hand, if the dielectric cover is thick
and large in extent, some energy will be ""trapped' by the dielectric and di-
rected along the ground plane.

The curves of Figure II-14 describe the deterioration of the pattern
for increasing dielectric thickness. The undulations in the pdttern become
more violent as more energy is trapped by the dielectric and reflected from
the edges of the ground plane.

10
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2.2 MEASUREMENT TECHNIQUES

Nhen slots are used as elements in an array, their characteristics
are affected by their neighbors. For certain slot array config-rations, this
mutual interaction is not very serious and the slot characteristics are prac-
tically the same for a single slot as for a similar slot in the >resence of a
number of other like slots in the array. On the other han., siots thn! will
experience strong mutual coupling in the array must be mess .red in the
presence of a large number of similar slots. For this reason measurement
techniques are discussed in three sections: Equivalent Circuit Representa-
tion (intro.iuctory), Negligible Mutual Coupling, and Effective Mutual Cou-
pling.

2.2.1 Eqnivalent Circuit Representation

Figure II-15 illustrates the disiribuiion of current lines on the inner
surfaces of a rectangular waveguide propagating the TEg) mode. If the
guide is matched along its length, this current pattern travels down the guide
with a velocity equal to the phase velocity in the guide. If the guide is ter-
minated in a short or open circuit (that is, if there are only standing waves
in the guide), this pattern remains stationary. The current lines in the
pattern may be resolved conveniently into two components: A longitudinal
component parallel to the longitudinal guide axis and a transverse com:po-
nent in a plane normal to the guide axis. In terms of lumped networks, one
may think of the longitudinal currenis as series currents and the transverse
currents as shunt currents. Thus, at an open circuit termination, the series
current vanishes and the shunt (transverse) current is a maximum; and at

short circuit termination, the shunt current vanishes while the series (longi-
tudinal) current is a maximum,.

A consideration of the wall currents offers a convenient and intuitive
means for determining whether or not a slot will radiate, and if so, what
type of equivalent circuit representation it will have. In Figure [I-16 the
position of slots on rectangular guide is shown. Slots b and g do not inter-
cept any lines of current so that no electric field intensity will be developed
in these slots (provided that the slots are sufficiently narrow), and they will
not radiate. On the other hand, slots ¢, h, i and j will intercept only shunt
currents and can be represented by shunt elements in an equivalent circuit;
zlots d, e and f will intercept only series currents and are represented by
series e[éments; slot a intercepts both series and shunt currents and can be
represented, in general, only by a four terminal network (that is, by a T or
a mM-section). The degree of coupling or excitation of these slots depends on
the current density intercepted by the slot and the component of the length
transverse to the current lines. Thus, the coupling at a given position in the
guide can be adjusted by the orientation of the slot: For slots d and i the cou-
pling increases with 0, for c the coupling increases witk x, and for a the series
coupling increases with 9 and the shunt coupling increases with x. [fis im-
portant to note that if the guide is not matched, the coupling also depends on
the position of the slot along the guide. A shunt slot located Ag/2 from a short
or Ag/4 irom an open circuit (that is, at a node of the transverse currents)
will not radiate nor will a series slot radiate at a node of the longitudiral
currents. A slot of the type a can be made to look like a simple shunt or series
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eloment by focating i a4t o v te of the series current or a node of the shuat
(

arrent,

s possitle to ol ¢» the phase of the electric field in the slot
by 18U degices vy the simp  uxpedient of relocating the slot in its mirror
image position with rospec the appropriate guide axis. This phenome-
non 1s illustrated in Fignare 17.

Since a radiating represents a loss of power from the trans-
mission line, the slot can't ¢presented by a lumped resistive element lo-
‘ed af th» ~enter of the s on the equivalent transmission line. In gen-
erai, theo oo . " ‘tive power associated with the sl.:. Experi-
mental freecieio, _usurements of slot impedance show that it I >haves

"¢ . :esounant circuit near the frequency at which the slot impedance is

real. The series slot looks like a parallel resonant circuit in series with

the lie and the shunt slot looks like a series resonant circuit in parallel

with the line as shown in Figure II-18. Thus it is possible to define a slot
bandwidth in terms of the Q of the resonant circuit representation. . Broad
band slots will be considered in the discussion of slot bandwidth, section 2. 3. 5.

For high efficiency, it is desirable to minimize the reactive power
associated with the slot since high reactive power makes for high currents
and consequent wall losses. Thus, from a practical standpoint, the ''reso-
nant slot" (approximately a multiple of Ag/2 in length) is the most interest-
ing. Furthermore, the power radiated from a slot is proportional to the
value of rgsistance R or conductance G for its equivalent circuit. A. F.
Stevenson®4: 75 has developed equations for determining the value of G or
of R for the appropriate resonant siots. The theory is based on the follow-
ing assumptions:

1) The slot is narrow; that is, 2 log,, (length /width)>> 1.

2) The slot is cut so as to be near the first resonance
(length= A\ g/2).
3) The field in the slot is transverse to the long dimension

(due to assumption 1) and varies sinusoidally along the
slot, independent of the exciting system.

4) The guide walls are perfectly conducting and infinitely thin.

5) The field in the region behind the guide face containing the
slot is negligible with respect to the field outside the guide;
physically, this assumption means extending the face con-
taining the slot into an infinite perfectly conducting ground
plane. .

The third assumption corresponds to an approximation often made
for the current on a resonant dipele and is in close accord with experimental
conditions. The fifth assumpti~n in general is not valid in the physical
situation except when very large ground planes are employed. Assumptions
(1) and (4) are generally slightly in error. Nonetheless, the equations are
quite valuable in that they give approximate values for G and R and also indi-
cate the manner in which the slot parameters affect G and R. Furthermore,
good experimental agreement is found in many cases. More exact theoreti-
cal investigations have been performed on certain types of practical slots and -
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can be found in the literature. 43

Figure II-19 illustrates the rectangular guidc ..ensions, the four
types of slots considered by Stevenscn, and their equivalent circuit repre-
sentation at resonance. The relations for the appropriate resonant slot con-
ductances, G, and resonant slot resistances, R, normalized to the charac-
teristic impedance for the waveguide are given below:

1) Longitudinal shunt slot in the broad face (Figure II-19B):

G=G_ sin®? X (12)
o a
where
G =2.09 "B 2 cos2 () (13)
o » b 2\
g
2) Transverse series slot in the broad face (Figure II-19C):
_ 2, nx
R =R_cos =) . (14)
where
R_=0.523 (-§)3 N ) (15)
o X' ab 4a
3) Centered inclined series slot in the broad face
(Figure 1I-19D):
L A2 * 2
= a— i ) S
R = 0.131 ()‘g) A |Ke) sin e + & J(6} cos 0 (16)
where
1(0) ( _ €°% @‘) + °°8 (-F-) d.,
10T Glraser R )
and
f}:%_coscli%s'mo (18)
8
4) Inclined shunt slot in the narrow face (edge slot)

Figure II-19E:

13
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'sin @ cos (i%— sin 0) 2

1l - (--L—)Z sin®0
‘g

= 30 (2gy
73n A a3b

(19)

These equations are cumbersome, and, as previously noted, not
exact for practical slots. Thus, slots are not usually designed by these
equations. The equations do indicate quite well the manner in which G or
R varies with 0 or x, as the case may be, so that data on a few slots can
be extended reasonably accurately. In addition, some of the Stevenson
equations lend themselves to simplification in special cases.

It may be worth while to mention here an application of Babinet's
Principle to slot admittance. Booker? has shown that the radiation
(driving-point) impedance Z, of a center-fed wire dipole near resonance

and the radiation admittance, Ys’ of the complementary narrow center-fed

slot in an infinite ground plane are related by
Y =42 /2 2
C w/ To

in which Z, is the intrinsic impedance of the surrounding medium. The

admittance which a waveguide-fed slot presents to the wave in the guide is

not the same as the admittanceY, above, because the method of feeding the
slots is diilerent.

2.2.2 Negligible Mutual Coupling

Slotted Liine Method

General techniques for measuring voltage standing wave ratio
(VSWR) and impedance are described in Silver64 and Ragan?l. More
specialized treatments are given by Stegen’3 and Oliner2% The following
discussion is based on Stegen's paper.

Two techniques may be used to obtain the impedance of a slot by
VSWR measurements: One is to terminate the waveguide by a movable ter-
mination which is almost a match to the waveguide, and the other is to use
a near-perfect movable short circuit. The latter method is quicker and
more accurate for slot measurement and, therefore, is the method which is
generally used.

The movable short-circuiting plunger must have a very low loss,
a wide bandwidth, and an accurately calibrated movement. The piunger
found to be most desirable for waveguide slots is the noncontacting typedl
The contacting type, however, is more convenient for use in the TEM trans-
mission lines. Usually the shorting plunger is placed inside the waveguide
section containing the slot, thus keeping attenuation to a minimum and

14
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‘ avoiding a junction between the slot and plunger. The slotted-line and the
test slot are either machined in the same section of transmission line or
the junction between the two is designed to have a minimum effect on the
measurements. (For longitudinally polarized slots care must be taken tc
minimize the reflections outside the guide from connecting flanges.) The
distance between the slotted line and the radiating element is kept as small
as possible with the limitations: 1) that the slotted line should be isolated
from the fields radiated by the slot, and 2) that there should be no external
objects in the vicinity of the slot to affect the impedance measurements.
The r-f source must be frequency stabilized to one part in 105 for pre-
cision measurements. Frequency instability of 105 cps at X-band has been
found to give a phase error of 3 percent of the maximum node shift for a
slot which har a resonant conductance of 0.02. This frequency stability is
not needed for the usual impedance measurements, however. Usually the
source is isolated from the slot by attenuators and the frequency is con-
tinuously monitored by a transmission-type cavity lightly coupled to the
main transmission line. Figure II-20 illustrates a typical impedance
measuring setup.

The step-by-step procedure for measuring the admittance of a pure
shunt slot on a transmission line follows. '

1) A movable short-circuiting plunger is placed at two adjacent
positions in the waveguide beyond the slot in such a way that there is no
radiation from the slot as indicated by a sensitive pick-up device. The pick-

(' up device is usually a horn feedirg the energy into a crystal detector. Care

- must be exercised in placing the pick-up device symmetrically about the

slot because of the presence of a small amount of energy in the form of the
second slot mode which may cause erroneous readings. These two positions
of the sherting plunger are a half guide wavelength apart, and fcr a shuni
slot they represent a short circuit across the waveguide at the electrical
center of the slot. If the plunger is moved to a position exactly half way be-
tween these two points, the waveguide will appear to be terminated in an open
circuit beyond the slot center.

. - I
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2) With zero radiation from the slot, two adjacent node positions
on the standing wave in the slotted line are noted. The distance between these
nodes is a half wavelength in the slotted section.

3) A second node position is obtained on the slotted line when an
open circuit termination is placed at the slot.

4) The VSWR is determined by either of two methods. The usual
method is to use a calibrated crystal or a bolometer rectifier and to read the
VSWR on a meter. The requirement that the traveling prolc be coupled very
weakly to the waveguide results in the node being near the noise level, and,
therefore, VSWR's greater than about 10 become increasingly difficult to
measure. A method which determines VSWR greater than 10,which is almost
independent of probe insertion, is frequently used. This method has the
advantage that sufficient probe insertion may be used to provide a well-de-
fined node. In the vicinity of the node the shape of the standing wave is para-

( bolic. If the distance between two points on the standing wave at n times the

15
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t minimum power level is A\ X, then the VSWR is given by
- AgAdn-I -
p= g for D\ X small. (20)

The distance {} X is measured very accurately by using a dial indicator
attached to the slotted line.

¢ The admittance of the slot may now be determined from the dis-
tance the node has moved and from the VSWR in the waveguide (see Figure
11-21).

The procedure for measuring the impedance of a pure series slot is
the same except that an open circuit at the slot results in no radiation. This
difference must be remembered when the phase of the impedance is calcu-
lated from the distance the node shifts. For the case of the inclined displaced
waveguide slots which may be represented by a four-terminal network, the
technique must be modified. The electrical center of the slot must be de-
termined by physical measurement. This modification also applies to edge
waveguide slots which cut into the broad face of the waveguide and which may
have an'appreciable series component.

The length of waveguide from the shunt slot to the slotted section <
is often great enough to require compensation in the admittance for the i
C. losses in the waveguide. The short circuiting plunger may also be lossy and
require that the slot admittance be adjusted accordingly. The loss in the
short, a g’ may be represented as a low admittance across the shunt element

and may therefore be subtracted directly from the measured value. If one
now neglects the short and assumes that the guide wall losses are all between
the slot and slotted section, a distance .t , then the VSWR of the slot relative
to the measured VSWR, P’ is

p_ - tanhal
m (21)

Ps 1 - pmtanh ol

where a = the attenuation constant of the waveguide. The normalized con-
ductance of a resonant slot, neglecting the loss in the short, is (for Gs<l. 0)

G - tanh u.l
m (22)

G' =
® 1-G_tanhal
- a where G = FL . For the usual case of G and ot small,
M m
N ’~
1 ¢ Gl = G -al (23)
¥
.
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The normalized conductance of the slot, taking the transmission line and
short into account, is approximately

Gs=Gm-(as+aZ) (24)

where a, + a £ is the loss measured without the slot in the waveguide. It
should be noted that the attenuation in an unslotted guide is slightly different

from that in a slotted guide since the slots distort the wall current distri-
butions.

A similar analysis may be made for series slots where the slots of
interest are those having resistances less than unity in which case
R_-tanhal

R - N 25
s T-R_tanhal %s (25)

R_-@L+a) (26)

Radiation Pattern Method

Slots whose normalized conductances (or resistances in the case of
series slots) are greater than 0.1 can be measured very accurately by the
direct measurement technique; however, direct measurement of lower con-
ductance slots becomes increasingly difficult. As the slot adn:ittances be-
come smaller, waveguide attenuation becomes a larger part of the measured
admittance. The difficulty is enhanced by the high VSWR's that are associated .
with the low slot admittances. A new admittance measuring technique is
therefore desirable. Since the phase of the radiation from a slot is of inter-
est, a systemn has been developed to measure the radiation pattern of two slots

and from this pattern to calculate the phase of the radiated field, as well as
the admittance (or impedance) of the slot.

Two isotropic radiators whose radiated fields differ in phase by ¢

and whose magnitudes are proportional to Al and AZ will have a power pattern
proportional to

p-|a

. 2
j(kd cos 0 + @)
l+Aze |

2 2

1+t A; +2A A, cos (kdcos 0 + 7

(27)
A

where d is the spacing between elements and 0 is the angle measured from
endfire to an observer. This power pattern is maximum (P ) when the

cosine term has a value of +1.0 (at the angle 8 ) and is minimum P

min)
when the cosine term has a value of -1.0 (at the angle 0

._). The ratio of
min
the magnitudes of the excitaticu coefficients is
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P < 1/2
max -1
A, P_)
_ min

N I (-t A T e S

<= (28)
Ay <Pmax >1/2+1
y Pmin
The relative phase between the elernents is
¢g=(2n-1)r - kdcos O in (29)
or
¢ =2nn - kd cos % nax (30)

If the spacing between two shunt slots is an integral number of guide wave-
lengths, then the power radiated by each slot is (neglecting guide attenuation
and external coupling) proportional to its conductance and it is also propor-
tional to the square of the magnitude of the excitation coefficients. It follows

L e S R85 ki BT
¢ e < TS o A T RGPS M P TR e g ST D S R AR A

then that
AZ 2
G, = G, (__l) (31)
C' for shunt slots, or
AZ 2
; R, =R, (Ii-) (32)

for series slots.

Since the phase of the radiated field with respect to the keld in the
guide for a shunt slot is the phase of the slot admittance73, the susceptance
of the unknown slot when measured with a known resonant slot is

! B, =G, tan §f (33)

for shunt slots, or

X,=R,tan (34)

for series slots.

The slot conductance can be calculated from equation (31) using
the ratio AZ/AI from equation (28). The susceptance can be calculated

from equation (33) using the angle ¢ from equations (29) or (30).

e e
-
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A series of measurements, made as the length of the unknown
shunt (series) slot is varied, will result in values of the components which
are then plotted in the rectangular coordinate admittance (impedance)
plane. These points will determine a circle. The point of maximum ad-
mittance and/or zero susceptance is called the resonant conductance. A

plot of the susceptance of the slot as a function of length may be used to de-
termine the resonant length of the slot.

2.2.3 Effective Mutual Coupling

Impedance Method

Consider a transmission line with an unloaded'characteristic im-
pedance Zo and an unloaded propagation constant ¥ =a + jB, loaded at

regular intervals £ with identical radiating elements. Reference planes
may be taken midway between radiating elements so that this loaded line
may be considered to consist of Nunits in cascade, each unit consisting of
a radiating element centered in a length of line £ . This loaded trans-
mission line can be represented by a four-terminal network. The series
and shunt elements of the equivalent tee of this network are le - le and .

le, respectively, as shown in Figure II-22A. The impedances Z11 and
le may be measured in any manner, the usual one being to place a short cir-

cuit and an open circuit in turn across the output. The input impedance
for an open circuit termination is

z'itxoc = le (35)

and for a short circuit termination

. 2
z. =z 212 (36)
insc ~ “11 7 le

Bartlett's bisection theorem29 states that if Z; and 'r' are the

characteristic impedance and propagation function, respectively, of a
symmetrical network, then

z =2' cothYN -z +2

oc - “o 2 11 12 (37)
and
]
Z =Z ! tanh YN - -G
sC (o] ‘—2' =2 11 Z 12 (38)

are the cpen- and short-circuit impedances of half the network as shown in
Figure II-22B. Sclving equations (37) and (38),

!
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: t Y = g arc tanh A (39)

1tz

The loaded-line expressions64c

Y

cosh y',é = cosh y£ + yy— sinh y—é (40)
o

cosh y& =cosh y£ + 'Z'ZZ_ sinh y£ (41)
o

may be used to obtain the admittance Y of a shunt element or the impedance
Z of a series element.

The procedure for determining the impedance of a slot in the
presence of a number of like slots by the present method is:

1) Place a short circuit and an open circuit in turn across
the slotted guide at a distance ,é/z from the last slot. The
guide should contain a large number of equally spaced like
slots (spacing equals .£) so that end effects may be neglect-
ed and mutual coupling will be taken into account. Adjacent
slots are generally coupled to the guide in opposed phase.

p— 2) Measure the input impedances: short circuit and open cir-
(_ : cuit.
3) Uise equations (35) and (36) to determine the parameters of

the equivalent tee.

4) Substitute these values of Z,

and Z ., into equation (39) and
0 1 12
solve for y.

5) Calculate Y"I_ or ZZ__ from equation (40) or (41) using the value

of y' obtainéd in eq?xation (39) and the complex propagation
constant y of the unloaded transmission line.

Special Cases: Incremental Conductance

For N identical shunt elements of admittance Y, spaced A /2 apart
with the termination at a half wavelength from the last slot, g

Y. =0
insc

Y.
inoc

NY

and
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Y = N° (42)
For N identical series eclements of impedance Z spaced xg/z apart
5.
i insc ~ Nz
by inoc
: and

zZ = ‘1’:5" (43)

Watson has measured the inpui admittance Yinoc for an array of

N identical edge slots at Mg/2 ngacing and has plotted the conductance per
slot versus the number of slots88 as shown in Figure II-23A. The curve
approaches a limiting value which Watson called the "'incremental conduc-
tance, ' that is, the increase in conductance due to adding one more slot.

The length of the slot for resonance is found by trial and error.
The input admittance is measured and plotted as shown in Figure II-23B
for various slot lengths. The length for which the susceptance becomes
constant as N is increased represents resonance. This susceptance is
generally tuned out in the final array. A simpler method is to measure
the input admittance for an array of a sufficiently large number of elements
as the length of all the slots is varied. The length for zero susceptance
and/or maximum admittance can be defined as the resonant length. This
method yields substantialiy the same results.

Power Methods

The incremental conductance can be measured for an array of at
least twelve identical slots, at the appropriate spacing by measuring the
power in the guide before (Pl) and after (Pz) the slots, by the relation

Power = YO(V xV_ )

max in

(44)

The experiment is repeated with an added n slots, and the power before and
after is now P, and P.'. Thus, after n slots a fraction fn of the power inci-

1 2
dent on the n slots remains where
fn = P'Z/PZ (45)
Now if the slotted guide is matched at all points, for a single slot,
(Power radiated)/(power incident) = 1 - g; (46)

»
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where g; is the incrcmental conductance in terms of the guide admittance

(Yo). For n slots therefore

£, = (1-g)° (47)

1 8i 1 .
vBut loge [T-_g:} = loge [1 + 'ITg';".] = g if g;<<1, and therefore,

equation (47) becomes

1 1
g = — log, - (48)

f being defined by, equation (45).

The measured value of g; will not correspond to resonance uniess
the slot length for resonance is known; the experiment must therefore be
repeated using various slot lengths, and the maximum value of g; found.
With 12 edge slots, for example, the incremental conductance may be
measured to better than 1 percent on adding a few extra slots. The incre-
mental conductance is oiten very different from the conductance of a single
slot, for example, three times as high in a particular case quoted by Wat-
son.

The method of measurement outlined above obtains the incremental
conductance using the minimum number of slots, but two arrays comprising
different numbers of slots must be constructed for each measurement. An
alternative technique is merely to measure the mean conductance of a large
number of slots. It is necessary to take at least 24 slots to make such a
measurement, and to measure the power in (Pl) and the power out (Pz)
writing

g = Llog ) (49)
i N e P'E

It is obvious that the array of measured slots must be terminated
by a matched load. Criteria for insuring a match in the slotted guide are
mentioned in section 3.

Limitations on Methods

The impedance method (page 19) leads to some very involved com-
putations especially when guide attenuation is taken into account. If the
slots are spaced xg/z apart, the simplified equations (42) and (43) may be

used. The data obtained for A _/2 spacing cannot, of course, be used for

any spacing which differs much from )\g/Z.

The power methods (page 21) allow for any spacing provided the
slotted guide is matched at all points. This condition holds only for lightly
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f coupled slots and spacing off kg/Z (so that the reflections from the slots
»
do not add in phase).

The power measurements are simpler than the impedance measure-
ments. On the other hand, the impedance method gives a direct measure
of conductance and reactance so that it is obvious if the radiator is longer or
shorter than resonant length.

Nonetheless, it should be recognized that any method of measure-
ment of slot impedance in the presence of strong mutual interaction is an
approximation, since all the slots in the measured array will not '"see'" tk~
same mutual impedance even though all the slots are exactly alike. For a
long experimental array, the calculated impedance holds for slots near the
center of the array. Slots near the ends do not have as many neighbors and
therefore experience less mutual interaction than central slots. An array
designed with these data will have errors in the aperture distribution near
the ends.

Experience has shown that the above methods can be used to design
successful arrays when the array has a large number of elements, a uniform
progressive phase distribution, and an amplitude distribution that is not very

e w e e e ———

peaked.
2.3 EXPERIMENTAL AND DESIGN DATA !
C 2.3.1 Rectangular Waveguide Slots

p— - e -

The impedance of a rectangular waveguide slot depends on 2 num-
ber of factors: the guide dimensions (a/b ratio and wall thickness), slot
length and width, operating frequency, and the orientation of the slot on the
guide. The problem of the designer is the following.

R —

Given the operating frequency (the TEIO mode is

assumed here), guide dimensions, a particular
slot type, and the required slot impedance, find
the siot orientation on the guide and the slot di-
mensions.

Unfortunately, there is not a great deal of systematic slot design
data available. The specialized data to follow, however, may be extended
by scaling frequencies and dimensions, with a fair degree of accuracy. It
is advisable to check these approximations with a few experimental measure-
ments. Where the shape of a particular design curve is known for a given
1 set of conditions, it may be possible to draw a reasonably accurate similar
curve for another set of conditions by measuring only a few points for the
new curve.

: Most of the data to be presented here are taken from unpublished
: technical memoranda of the Hughes Aircraft Company. Only a small part
; N of Watson's data is presented since it is readily available in the public

N (. literature.
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' Longﬂudinal Shunt Slots

The longitudinal shunt slot (sometimes called shunt-displaced) is
one of the most widely used types of slot. This slot has the advantages that
the mutual admittance between adjacent slots on a guide is negligible and
that large conductances, of the order of the guide characteristic admittance,
may be obtained without complication. However, off-axis sidelobes may be
present due to the staggering of the slots in an array. (Section 3.4.5.) The ﬁ
radiation from the slot is polarized transverse to the guide axis.

An investigation of six shunt-displaced slots was carried on by one
of the authors. 72 The admittances of the six slots were calculated from
radiation pattern measurements at a number of frequencies and then plotted
in the complex admittance plane. The maximum conductance of each slot
was obtained from the curves (circles) determined by these experimental
points. The points of Figures I1I-24 and II-25 were then determined from
these measurements. The ratios G/Gm and B/Gm and the phase of the

radiation are apparently independent of the centerline displacement of ihe
slots.
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The measurements were made on longitudinal shunt slots in stan-
dard 1.0 by 0.5 inch (0.050-inch wall) waveguide at 9375 mc/s and the G
values obtained differed from the value obtained from equation (13) by the
factor 0. 96. A similar correction factor was obtained from experimental
results with series slots in waveguide and in that case was shown to be due
C almost entirely to the finite thickness of the waveguide wall. The semi-

empirical expression for the resonant conductance of the longitudinal shunt
slot at 9375 mc/s,

G_ = 0.96G = 1.19 sin® ( 2X) (50)

SPGOSNGB

is plotted in Figure II-26 with measured points indicated. Radiation pattern
measurements with a large ground plane about the slots gave essentially the
same results as direct admittance measurements without a ground plane.

The length of a narrow resonant slot having a given displacement
; has been shown empirically to be approximately directly proportional to the
free-space wavelength at the resonant frequency and is therefore plotted as
shown in Figure I[-27. Figure II-28 shows that, for small displacements, the
resonant length of a longitudinal shunt slot increases parabolically with its
S displacement from the center of the broad face.

Impedance measurements on slots have shown that the conductance
of a resonant slot with a particular displacement has a frequency variation

which is proportional to the terms in equation (13) which are frequency-
sensitive, that is,

2 A
Ga -2 RN 51
n)‘ cos (Z )\g) (51)

1
i
i
!
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( The frequency dependence of the resonant conductance is shown in Figure

I1-29. The curve was calculated from Stevenson's equation corrected by
the factor 0. 96,

The frequency dependence of the conductance and susceptance of
longitudinal slots measured by Watson as a function of slot width is shown
in Figure II-30, which also shows the improvement in bandwidth with in-
creasing slot width. It can be seen that resonance, defined here as the

: frequency for zero susceptance, does not occur at the point of maximum
% conductance. As in the case of wire dipoles which exhibit the same phe- 4
nomenon, this discrepancy may be attributed to end effects in the slot and

to frequency variations in the R, L,and C of the equivalent circuit repre-
sentation. 342

: The design data for a resonant slot may be extended to other fre-
i quencies (different from 9375 mc/s) as follows:

' 1) If the guide to be used is the same as the experimental guide
and the desired operating frequency is in the range 8400 to 10, 800 mc}s,

find the conductance, G, at the operating frequency, f, from Figure 11-29.

This curve is for a displacement X = 0.1833 inch. Substitute for G and X

R R AR LT

in

2 nx
) G = K sin (-a-) (52)
} :
; ( to find K. Equation (52) relates the resonant conductance and slot displace-
3 -

ment at the operating frequency. The resonant slot length can be deter-
mined with the aid of Figures II-27 and 1I-28. The original slot width
(0.0625 inch) should be retained (although slot width has a second-order
effect on G).

\ 2) If the new a/b ratio is the same as for the experimental guide
{ and if the frequency is not in the range 8400 to 10, 800 mc/s, the slot and
guide dimensions (including wall thickness) can be scaled directly.

3) If the new a/b ratio is different from that for the experimental
guide, it is possible to correct equation (52) according to equation (13); that
is, multiply K by the b/a ratio for the experimental guide and by the a/b
ratio for the new guide. '

Other data on resonant longitudinal shunt slots can be found in Wat-
son's paper. He finds, for example, that

G = 1.40 sin® ( 2X) (53)
at A=3.2cm. Cullen16 has derived a semianalytical expression for G:

M L2
G=K —% sin & (2) (54)

(; a’d
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t in which K is a constant which must be determined experimentally. For
example, at A= 3.2 centimeters, K was experimentally determined to be
0.454. Cullen presents a number of K values in his paper.

The results of various investigators differ by as much as 10 per-
cent, (and more in some cases) which will give the designer an idea of the
reliability of the data presented here. Nonetheless, an accuracy of about
10 percent is sufficiently good for many practical arrays.

B o U PR A
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Longitudinal Shunt Slots Radiating into Parallel Plate Horns: For
gl ; purposes of reducing oll-axis sidelobes and for beam shaping in the trans-

verse plane, it is sometimes useful to allow the slots in an array to radiate
into a paraliel plate or a flared parallel plate horn. The presence of this
horn modifies the slot conductances so that slots to be used in conjunction
with a horn system should be measured in the presence of the horn. Gruen-
berg‘?-8 presents theoretical equations and curves for the conductances of
longitudinal shunt slots radiating into parallel plate horns. Other horn con-
figurations have also been used but little data are available.

Edge Slots

. [P o s e O el s T
g e e - s nemRe. v it

The edge (or shunt-inclined) slot is probably as widely used as the
longitudinal shunt slot but has different advantages to recommend it. The
edge slot gives longitudinal polarization, which is the normal requirement;
and the slot is easy to construct. The simple edge slot can be cut in a

- single milling operation, the slot length being determined by the depth of

(‘ cut; the ""dumbbell'" and extended edge slot can be produced by drilling two
holes and milling the slot between them. Furthermore, it will be found
that machining tolerances are not so critical for edge slots as for longitud-
inal shunt slots. On the other hand, the edge slot has a large mutual effect
on the admittance of its neighbors which complicates the array design pro-
cedure considerably (see page 19 ). Further, high conductances cannot be
obtained without introducing cross polarization due to excessive inclination
of the slot. For long arrays, however, low individual slot conductances are
required and the edge slot is usually satisfactory.

"

-

Stevenson's expression for the conductance of a resonant edge slot,
equation (19), may be modified for small inclination:

G =G, sin’b (55)

for 0 small, fcr example, less than 15 degrees. However, the edge or b
dimension of a standard guide is usually less than a half-wavelength so that
the slot must be extended to the broad face to obtain resonance as shown in
Figure II-31. The section of the slot on the broad face adds a series com-
ponent to the slot equivalent circuit so that the slot is represented by a four-
terminal network. In most cases, however, the series component is

ney lected since it is generally small. Another expedient is to '"load" the
slot with dielectric or, by a dumbbell configuration, to make it resonant for

a shorter physical length and thus fit completely on the narrow face of the
guide.
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Stevenson's equation holds only for a single slot and does not take
mutual admittance into account. Since edge slots are generally nearly
parallel side-by-side in an array, the mutual coupling is very strong.

Thus, if the slot is to be used in an array, admittance measurements must
be made which include the coupling, (section 2.2.3). In this case, the slot
conductance is an "incremental conductance, ' that is, the increase in con-
ductance of a large group of similar slots at a particular spacing when
another slot is added. The incremental conductance is accurate only for
slots near the center of the large group; slots near the ends are subject to
less mutual interaction nuce they have fewer near neighbors. The measure-
ment of a slot having a strong mutual admittance is a difficult and inaccurate
procedure. The methods described (section 2.2.3), however, have pro-
duced reasonably successful arrays. Array designs using few elements, non-
uniform phase distributions, or peaked amplitude distributions will probably
result in failure, however.

Simple Edge Slot: The incremental and single slot conductances
versus s[ot Inclination for a particularZ edge slot are shown in Figure 1I-32.
Both curves approximate a G = G1 sin~0 curve for a range of about 0 to 15°

degrees, thereby substantiating equation (55). For these slots the variation
of susceptance with frequency is small compared with that for slots in other
positions on the guide. The variation of admittance with slot depth (that is,
length of cut into the broad face) is also small, as indicated in Figure II-33.

Since the design data for simple edge slots are not adequate, it may
be expedient to measure the incremental conductance for a slot of a particu-
lar angle and draw a sin2Q curve through the measured point to obtain a
design curve. Several successful arrays have been built using this technique.

Edge-Slot Coupling into Wave uide:‘?'.7 In order to reduce cross
polarization due to slot inclination and to cut down on mutual coupling, the
arrangement pictured in Figure II-34 may be employed. The open end of the
auxiliary waveguide can be matched to free space by appropriate E-plane
flares64d and the measurement of slot conductance becomes a measurement
of guide-to-guide coupl‘mg.37»

In the present experiment, mutral coupling was neglected; that is,
single slot conductance was measured. . .gure lI-35 shows plots of the depth
of cut and resonant conductance versus frequency for the slot coupling into an
auxiliary waveguide with a reflectionless termination. The electric field
excited in the slot is proportional to sin 0 and the field propagated by the
auxiliary guide is proportional to cos 8. Thus, the radiated power gand con-
sequently, the slot conductance) should he proportional to sin20 cosé9. Un-
fortunately, insufficient measurements were made to verify the relationship.

The resonant lengths of the three measured slots (15, 20 and 30 de-
grees) were within 0.010 inch of the same value.

The variations in resonant frequency and normalized conductance of

a 30-degree edge slot as a function of wall thickness are shown in Figure
[I-36. The thickness of the entire wall within the auxiliary waveguide was
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reduced for the measurements. These curves are useful for scaling the
edge slot data to other frequencies at which the wall thicknesses do not
scale,

Dumbbell Edge Slots: The dumbbell slot offers a useful solution
when a low conductance radiating element has to be cut into the narrow wall
of a waveguide and either the broad faces are not accessible for cutbacks
or it is not desirable to weaken the waveguide structure by cutting back into
the broad faces.

The use of the resonant dumbbell slot in linear array design re-
quires an extension of the slot into a solid metal block as shown in Figure
II-37. This arrangement introduces an additional variable, the depth to
which tl.e dumbbell is cut. To reduce the number of variables and simpli-
fy the investigation, three slot parameters were kept constant at the follow-
ing values: length = 0.700 inch, depth of dumbbell = 0. 328 inch (A /4 at
9000 mc/s so that an open circuit will appear at the face of the guide), width
of slot = 0.062 inch. Furthermore, since these slots were to be used for an
array on a helical waveguide in which the slots would be end to end (negli-
gible mutual coupling), single slot conductances only were considered.

Values of normalized conductances as a function of slot inclination
and frequency are presented in Figure II-38, The corresponding resonant
dumbbell sizes are plotted in Figure II-39. From these two families of
curves, one can obtain the array design curves consisting of resonant dumb-
bell diameter and resonant conductance as a function of any frequency within
the spectrum covered and at other frequencies by scaling all dimensions. A
particular set of curves is presented in Figures [1-40 arnd II-41. A compar-
ison with Stevenson's equation is also made in Figure 1I-40. By correction
for wall thickness, the correlation between the two curves can be improved.

Inclined Series Slot in the Broad Face

A slot inclined slightly about the centerline of the broad face of a
waveguide is transversely pciarized. Aside from the requirement for main-
taining high machining tolerances, the inclined series slot presents a cross-
polarization component which oiten must be eliminated. If the angle of incli-
nation is increased to 90 degrees, the slot will be longitudinally polarized.
This transverse series slot has a high resonant resistance and cannot be used
in long arrays because the first few slots extract most of the power from the
guide. The slot coupling may be adjusted by offsetting the slot from the guide
centerline and making the slot resonant by loading or by extending the slot to
the narrow face. (See Figure II-16, p:ge 112.) The mutual coupling problem
is also serious in transverse series slots in the broad face.

!

Simple Series Slot: Measurements of resonant length and normalized
resistance as a function ol frequency have been made for 159, 20° and 30°
resonant slouis of the type shown in Figure 1[-42, over a frequency range of
8600 to 9800 megacycles. The measurement techniques used are described

in the discussion of negligible mutual coupling, section 2. 2. 2, and the experimental

data are shown in Figure II-43. It can be seen that resistance and resonant
length are very nearly linear functions of the frequency. The width of these
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slots was chosen to be 1/16 inch. A change in this value of slot width,
for power breakdown or other considerations, would cause a slight change

in the resonant length and resistance but would not change appreciably their
behavior as a function of the frequency.

A comparison of the measured values of resistance with the theo-
retical values as given by Stevenson is shown in Figure II-44, The measured
values of resistance are lower than the calculated values due tc the finite
thickness of the waveguide wall. The variations in resonant frequency and
resistance with varying wall thickness are shown in Figure II-45 for a 30 de-
grees slot. When the wall thickness of this slot is reduced from 0. 050 to
0. 013 inch and the length is varied to maintain resonance at 8700 megacycles,
the change in resistance is + 10 percent as calculated from Figures II-43
and II-45. This percent change applied to the measured values of resistance
in Figure I1-44 brings them into agreement with the theoretical values of re-
sistance. This agreement is based on the assumption that the resistance will

not change appreciably when the wall is reduced from 0.013 inch to zero
thickness.

The measurements indicate that the resonant length remains nearly
constant as the angle of inclination is changed; hence all slots were cut to the
lengths given in Figure [1-44.

Series Slot with Horn: A linear array of slots of the type shown in
Figure LI<3Z (page 138) will radiate a longitudinal component of electric field
in addition to the transverse component. In some applications it may be de-
sirable to eliminate this cross-polarized component of electric field. In one
instance this component has been eliminated by allowing the slots to radiate
into a flared, parallel-plate horn similar to that shown in Figure 11-46. The
plates are spaced such that the cross-polarized electric fields are suppressed,
and the flare of the horn is such that reflections from the throat and aperture

very nearly cancel each other. The horn also can be used to control the radi-
ation pattern in the transverse plane.

The addition of the parallel-plate horn produces an increase in both
the resonant frequency and resistance of the series slots. Also, any reflec-
tions from the throat or aperture of the horn will produce small variations
in the resonant frequency and resistance. Reflections from the aperture,
Liowever, should become negligible compared with those from the throat when
the E-plane aperture dimension is larger than about three-fourths of a wave-
length. Thus, for a given flare angle there is a flare length beyond which any
increase in flaie length will produce a negligible change in slot characteris-
tics. Reflections from the throat of the horn, on the other hand, will cause
variations in slot characteristics, and these have a frequency sensitivity de-
pendent upon the separation of the slots from the throat of the horn. It is im-
portant, therefore, that the electrical length from the slots to the throat of
the horn be as small as possible consistent with effective suppression of the
cross-polarized component of electric field, or that the reflections ffom the
throat of the horn be matched out in some manner. The resonant lengths and
resistances versus frequency for a 20-degree slot with two different horns
are shown in Figure 11-47. The slopes of these curves are approximately
the same as those of Figure 11-43 (page 139); however, more data are necessary
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(" to establish the correspondence. The measured values of resistance for
g 15~-degree and 20-degree slots with horns have been found to focllow close-
ly a sin20 curve, and it has been assumed that this shape will hold for
angles less than 15 degrees. This assumption is substantiated by a suc-
cessful array which has been built with the present data.

The General Inclined-Displaced Slot in the Broad Face

An inclined laterally displaced slot cut in the broad face of the guide
is illustrated in Figure II-16A (pagell2). For the displacement, x, equal to
zero, the general slot becomes a series slot; and for the inclination, 0,
equal to zero the general slot becomes a shunt slot. Furthermore, the load
across the slot (the waveguide termination) determines.the wall current
pattern at the slot, that is, the proportion of series and shunt currents at
the slot. Thus, the general inclined-displaced slot is quite versatile. Un-
fortunately, this slot is very difficult to measure and manufacture. For this
reason, the slot is primarily of academic interest and will not be discussed ,
at great length here. : 1

Watson and Guptill have studied this slot and, in fact, did build an
array of such slots with probe compensation. The slot can be so adjusted
that, after a small residual susceptance has been cancelled out by a probe
opposite the slot, it gives a perfect match before and after the slot. Thus,

a pure traveling wave is obtained in the guide, and a nonresonant array (see
Resonant and Nonresonant Arrays, section 3.1) which radiates at right angles
(' to the guide may be constructed. A very large bandwidth array may be ob-

. tained using this type of slot, particularly since the mutual interaction among
neighboring slots is small. The slot is a combination of series and shunt
slots and therefore acts as a n-network; thus, there is an appreciable phase
retardation at the slot, and the slots must be placed closer than xg/z to give

a broadside array. Watson gives a complete set of design data for the gener-
al slot in his book and paper.

Slot in an End Plate

If an open waveguide propagating the TEIO mode is short-circuited

by a metal plate at the open end, currer s will be excited in the shorting plate.
The current lines in the plate will be nurmal to the broad faces of the guide;
that is, they will be transverse (shunt) currents. A slot cut parallel to the
broad faces in the plate will therefore radiate and will look like a shunt ele-
ment on the equivalent line. In the extreme, the "slot" aperture may be the
open end of the guide itself. Theoretical admittance data for open-ended
waveguides radiating into an infinite ground plane are given by Lewin30 For
narrow slots, the radiation can be controlled by inclining the slot to the
current lines in the shorting plate. Since the shorting plate is of limited size
and since inclining the slot would result in cross polarization, the slot radi-
ation is more often controlled by the amount of power fed to the section of
guide containing the slot. In this case, the feed might be matched by an iris
or similar device.
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Slot Pairs

An experimental investigation of in-phase longitudinal shunt slot
pairs has been made by E. P. McDowell and N. Namerow-at the Hughes
Aircraft Company., The arrangement of the slots on the guide is illus-

- trated in Figure 1I-48. Design curves for resonant slots in the frequency

range 8400 to 10,200 megacycles are presented in Figure II-49. In Figure
II-49A a family of curves of resonant conductance versus resonant frequen-
cy is plotted with slot displacement as the parameter; and in Figure I1-49B
a family of curves of resonant length versus resonant frequency is plotted
with slot displacement as the parameter. From these curves more special-
ized design curves can be drawn. Thus, at a particular operating frequency,
the designer can find five points on a curve of normalized conductance versus
slot displacement from Figure II-48, and he can find five points on a curve
of resonan. length versus slot displacement from Figure 1{-49.

2.3.2 Probe-Excited Slots®%¢

There are various slot positions on a guide for which no radiation
takes place. (See discussion, section 2.2.1.) It is possible; however, to make
any slot of this type radiate by inserting a suitable probe into the guide in
the vicinity of the cslot. The probe introduces the necessary asymmetry in

the field and in the current distributions tor excitation of a field across the
slot.

An importani advantage of an array of probe-excited slots is that
all the slots will have the same relative positions on the guide except, of
course, for a longitudinal displacem nt. In this way, the off-axis sidelobes
common to longitudinal shunt slot arrays can be eliminated. Instead of ef-
fecting phase reversals by displacing adjacent longitudinal shunt slots on
opposite sides of the waveguide centerline, for example, the direction of the
field across the slot can be controlled by the position of the probe. The phase

of a given slot can be shifted 180 degrees by switching the probe position as
illustrated in Figure II-50A,

Another advantage of the probe-excited slot is that cross polarization
due to slot inclination can be eliminated. The amount of energy radiated by
the slot is controlled by the probe insertion rather than by slot inclination.
For the case illustrated in Figure II-51A, where the probe is parallel to the
field, the coupling is adjusted by the probe depth. To excite an edge slot a
bent probe is used as shown in Figure II-51B. The coupling can be varied by
the angle between the hook of the probe and the electric field. In some cases
the screw head on the outside of the guide introduces undesirable impedance
characteristics, but the head can be ground off after the desired coupling has
been obtained, or the unit can be balanced externally by 2 dummy screw head.

Other variations of probe-excited slots in other types of rectangular
guides are, of course, possible. Scme of these are described by Clapp 3,

Despite their advantages, probe-excited slots have been used only

occasionally because they are extremely sensitive electrically and mechani-
cally; generally, the bandwidth is small and the probe tolerances tight. Some
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probe-fed antennas in circular and elliptical guide, however, are described
by SilverH4i

2.3.3 TEM Line Slots

The wall currents on a TEM transmission line are longitudinal,
Thus, an inclined or a transverse slot cut in the outer wall of the TEM line
would radiate and could be represented by a series impedance. An advan-
tage of the TEM line over waveguide is the fact that, at a given frequency,
the TEM line can have a smaller cross section,

Circular Coaxial Transmission Line

The most familiar type of TEM line is the circular coaxial type.
Nevertheless, very little practical work has beer done with slois on circu-
lar coax with the exception of a few arrays of probe-fed slots., The reasons
for the lack of interest in circular coax include the difficulty of predicting
the radiation pattern for an array of slots on a small circular cylinder and
the difficulty of machining slots on curved surfaces.

Rectangular TEM Line

A TEM transmission line with a rectangular outer conductor elim-
inates some of the difficulties posed by the circular coax. Experimental
data have been obtained for a single slot in two types of rectangular line:

1) a rectangular outer conductor with a coaxial round inner conductor, and
2) a rectangular outer conductor with an offset strip inner conductor.T?

In the first type of line, dumbbell-loaded slots were cut in the
broad face of the outer conductor and were inclined about the centerline to
va.y the excitation. A reasonablv successful 16-element array was con-
structed with this type of slot. Since the slot data for this array are quite
specialized, they will not be presented here. The data do show, however,
that the slot resistance varies approximately as 8in20, where O is the angle
of inclination. The slots were dumbbell-loaded to avoid having adjacent
slots overlap when spaced approximately A g /2 apart.

In the second type of line, transverse slots were cut in the broad
face of the guide and were displaced from the centerline of the offset inner
conductor to control the excitation. Since the dimensions of the rectangular
outer conductor must be designed to suppress modes different from the TEM,
the width of the broad face is limited and the slots must be loaded (dielectric
or dumbbell) if they are to be resonant on the broad face. The greatest ob-
jections to this type of slot are the mutual coupling proolem and the inability
to muake the slot resistances very small.

2.3.4 Circular and Elliptic Waveguide Slots

It is possible to construct slot radiators in circular or elliptic wave-
guide by proper arrangement of the slots with respect to the wall currents.
However, very little work, practical or theoretical, has been done along
this line,
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Wong has developed analytic expressions for the radiation conduct-
ance of transverse slots in eiliptic cylinders and presents some theoretical
curves. 95 The radiation conductance is the conductance at the terminals
of a parallel wire line feeding the slot, not the conductance seen by the wave
in an elliptic guide. He shows that the radiation conductance is influenced

considerably by the degree of curvature of the surface on which the slot is
located.

Feiker and Clark have measured the admittances of a number of
resonant longitudinal slots in circular guide propagating the TE,;; mode. 24

The results indicate properties similar tothose of longitudinal shunt slots

in the broad face of rectangular guide. The equivalent circuit representa-
tion for the longitudinal slot in circular guide is a shunt conductance. Feiker
and Clark have derived a formula (similar to Stevenson's for the longitudinal
shunt slot in rectangular guide) for this conductance:

480 o .2
g = T I8 (%‘\%—.) cos? (B 11 )‘1—) sin do (56)
where B 11 is the phase constant for the circular TE11 mode and (Io is the
angle between the direction of polarization of the waveguide mode and the
radius vector to the center of the slot.

Lucke39 has derived relations for the mutual admittance of slots in

a circular cylinder in terms of infinite series and integrals of cylinder har-
monics.

2.3.5 Slot Bandwidth

The bandwidth of a slot array depends to some extent upon the
bandwidth of the individual slots, that is, on the frequency characteristic
of the slot admittance. The bandwidth may be conveniently defined in terms
of a slot '"quality factor," Q:

f
Q= xp (57)
where fo = resonant frequency and
Af = difference between frequencies at which slot admittance is one-

half times the resonant admittance.
This definition of Q requires the use of a large band of frequencies when

measuring very broadband slots. An alternative expression which permits
measurement over a narrower band isl5

_ fo B
=2 (5710 (58)

where C'o = resonant slot conductance,

B = slot susceptance;
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or, iaterms of directly measurable quantities,

2
N - d
Qp = lf__c_° (p~ -1) (‘arA) fo (59)
9]

where p

voltage standing wave ratio

and A

difference in wavelengths between the standing wave node positions
at f and f . *

Effect of Slot Width

In an experiment conducted by R. H. Reed, 21 the slot bandwidth
and resonant frequency as a function of slot width was measured for a large
number of longitudinal shunt slots. During the investigation, it was dis-
covered that slots which overlap the waveguide centerline (central slots)
possess a very peculiar impedance characteristic. However, further study
of this phenomenon was not undertaken. Although only longitudinal shunt

slots were measured, some of the data may be extended to other types of
slot.

Figure II-51 is the curve of QB as a function of slot width. The

measured values of QB are given approximately by the empirical relation

K
NW

where K = constant of proportionality

Qg =

and W= slot width. As the slot width is increased to the point where it
crosses the centerline, an abrupt change is noted and the measured values
depart quite severely from the approximation.

The curve of susceptance as a function of frequency for a wide slot
with a slight centerline excursion {shown in Figure 1I-52) further illustrates
experimental difficulties in an accurate determination of QB for thcse cen-

tral slots. A small error in the measurement of B is accompanied by a

large error in the determination of fo with a resuitant large error in compu-

f
tation of QB = 2'3_ ( 3T ) £ - As a consequence, an estimate of the mean
o

o]

value of ( g.?.) f about fo was used rather than a measurement of the slope
o

at resonance,

The resonant length of a longitudinal shunt slot has been found to
increase with slot width until the slot crosses the waveguide centerline, as

*In this discussion, resonance is defined as the frequency giving zero slot
susceptance (not necessarily maximum admittance).
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shown in Figure II-53. This curve was obtained with a relatively high
conductance slot (Go = 0.32) in order to have a large number of measure-

ments. Lower conductance slots have been found to give curves which had
the same shape but which shifted vertically downward from that of Figure
I-53. This vertical shift is caused by the dependence of resonant length
upon slot displacement from the waveguide centerline.

As noted above, 2 large drop in slot Q occurs as a longitudinal
shunt slot is widened to the point at which it becomes central. At the
same point, Figure II-53 shows that there is a marked drop in resonant
frequency. In fact, if the ratio of the slot width to centerline displacement
exceeds approximately 2. 35, there are indications that the slot may not
become resonant. This absence of resonance was observed for the entire
range of conductances tested. Study of the effect of shortening the slot was
not completed.

Figures II-52 and 1I-54 show the frequency characteristics of a

low Q slot having a width to centerline displacement ratio of 2. 30 (this slot
is therefore a borderline case). Comparison of the susceptance charac-
teristics with those of a narrow slot shows a reduction in variation with fre-
quency coupled with a tendency for the susceptance values to oscillate near
zero. There are some experimental difficulties in obtaining the susceptance
values shown in Figure IlI-52, and therefore, the curves are to be regarded
as an indication of trend rather than a precise quantitative measurement.

Absence of resonance should not be serious, however, provided the
susceptance does not vary markedly with frequency and remains small com-
pared with the conductance. A further investigation of the admittance be-
havior as a function of frequency of the low Q slot was made for several slot
lengths., The results are also shown in Figures 1I-52 and 1I-54. As can be
seen, lengthening the slot not only lowered the resonant frequency appre-
ciably but also raised the normalized conductance about 20 percent for a 2. 6-
percent increase in slot length. In addition, the conductance reached a peak
at a frequency far from resonance. These characteristics tend to make a
slot this wide of little interest for array applications.

Effect of Slot Loading

Reducing slot length by various methods of loading tends to increase
the Q of the slot. The various types of loaded slots include dumbbell-shaped
slots and dielectric loaded slots (here the loading increases with the amount
of dielectric present and the dielectric constant of the loading material).

The results of Q rneasurements on transverse slots in a TEM line
(rectangular outer and flat center conductor) are presented in Table I.
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TABLE !

RESULTS OF Q MEASUREMENTS ON TRANSVERSE SLOTS IN TEM LINE

@ —

Resonant
Frequency
Type of Slot (mc/s) Q
5 by 1/6 inch straight unloaded 1200 24
3 by 1/8 inch straight, dielectric loaded,
er =7.2 1150 33
3 by 1/i6 by 1 inch diameter dumbbells 1200 37
2-1/2 by 3/16 by 7/8 inch diameter dumbbells,
dielectric in straight section only,
€. = 7.4 1220 27
3 by 5/8 inch straight, dielectric loaded,
€ = 7.2 1390 14
2 by 1/16 by 1/2 inch diameter dumbbells,
dielectric in straight section only,
€ = 7.4 1000 110
1-5/8 by 1/16 by 1/2 inch diameter dumbbells,
dielectric in straight section only,
€ = 7.4 1300 118

7he dielectric loading described in the data in the table consisted
of a slug of dielectric which filled the slot rather than covered it. Dielec~
tric weatherizing covers have a loading effect which is not so large as the
dielectric slugs.

The tabulated data indicate that, with the proper choice of slot
width, dielectric material, and dumbbell size, theover-all length of a slot
can be appreciably reduced while satisfactory broadband operation is still
maintained.

Multiple Slots
Ehrlich and othersz" have investigated the possibility of increasing
the bandwidth of a slot element by the use of several closely spaced slots as
a single element. It was found that the broadbanding effect was a function of
the lengths of the slots and their separation. For large differences in slot

lengths, it was found that closely spaced slots acted independently; that is,
the slots, despite their close spacing, have the separate impedance charac-

teristics of the individual slots. Broadbanding by this method can be com-
pared with the stagger-tuning of coils.
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3. SLOT ARRAYS

The primary advantage ol an array of individual radiators (slots,
dipoles, polyrods, etc.) as opposed to an optical type of antenna such as a
point source and reflector is that the aperture distribution which determines
the radiation pattern may be readily controlled. In this section, the types
of arrays are named and described, and methods for producing a given ampli-
tude and phase distribution in the aperture are given. Methods for determin-
ing the aperture distribution whith will produce a required radiation pattern
are presented in the third section; and, finally, practical problems encoun-
tered in the design of slot arrays are discussed.

3.1 RESONANT AND NONRESONANT ARRAYS

3.1.1 Resonant Arrays

Linear arrays have been divided into two classes: resonant and non-
resonant. In the resonant array, the slots are spaced xg/z apart along the

guide with adjacent slots coupled in opposed phase, or ) _ apart for in-phase

slots. For example, in a longitudinal shunt slot array, the slots would all be
displaced on the same side of the guide axis. The resonant array is termi-
nated by a short circuit at the last slot for an array of series slots and by an
open circuit for an array of shunt slots. All the slots may be considered to
be located at a single point on an equivalent transmission line (for negligible
attenuation). Thus, the problem of distributing power to the various elements
is a simple network problem; for shunt slots, the slot conductances are all in
parallel, and for series slots, the slot resistances are all in series. The in-

n
put conductance of a shunt slot resonant array is > B’ and the input resis-
k=1

n

tance of a series slot array is Z r» Where g, and r| are the resonant con-
k=1

ductance and resistance, respectively, of the kD slot and n is the number of

slots in the array. The array is generally designed for unityinput impedance

so that the array will be matched at its feed.

The resonant array is useful for short arrays and has the advantages
that no power is dissipated in the reflecting termination and that its beam is
normal to the array, As the length increases, however, a very small change
in frequency is sufficient to destroy the necessary phase relationship down the
guide and change the input impedance and radiavion pattern radically (the main
beam may split due to the reflected wave). For example, an array of n radi-
ators, 1/2 n guide wavelengths long, would probably be useless if the fre-
quency were changed to make it 1/2 n % 1/4 guide wavelengths long since this
would make the end radiator roughily in quadrature with the first, which would
invalidate the principle of resonant operation. The bandwidth, therefore,
would be approximately } 50/n percent. This criterion is reasonably good for
n>10. A more accurate means for determining the bandwidth of a resonant
array is afforded by the curves of Figure IlI-1. Long resonant arrays also
require accurate spacing between slots so that stringent mechanical tolerances
are required.
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3.1.2 Nonresonant Arrays

The sensitivity of long resonant arrays has led to the development
of arrays with slot spacings other than xg/z or A _; these are the non-

resonant arrays. In these arrays, since the slots do not radiate in phase,
the beam emerges at an angle to the array, and the angle changes with
frequency according to the relation

; = _\ A

where 0 = position of the main beam relative to broadside
d = element spacing
A\ = free space wavelength
A, = guide wavelength

and adjacent slots are coupled with opposed phase. Further, a small per-
centage of the input power (approximately 5 percent) must be wasted in a
dummy load at the far end of the array. The advantages of the nonresonant

array are improved impedance and pattern bandwidth, and an easing of
mechanical tolerances.

The important characteristic of the nonresonant array (sometimes
called a traveling wave array) is that it is matched along its whole length.
This matching is accomplished by having the slots loosely coupled (which
is generally the case for long arrays), by spacing the slots far encugh off
A _/2 or A _ so that the reflections from individual slots add randomly

(not in phase), and by terminating the guide in a matched load. A criterion
for ensuring a correct match and uniform phase along the array has been
developed by a number of investigators (see References 87, 88, 26a) and is

gsz csc? pd K1 (61)

where gg is the largest slot conductance, 8 = 2n /)‘g’ and d is the inter-
element spacing. For practical purposes

gsz csc? pd=o0.2 (62)

may be used; this condition gives a maximum VSWR of 1.2. The effect of
slot spacing on SWR is indicated clearly in Figure III-2. It can be seen
that the impedance bandwidth is limited by the proximity to resonant spac-
ing.

The efficiency bandwidth is generally less than the input impedance
bandwidth. The power into the load varies due to the slots going off reso-
nance, change of normalized slot conductance, and change of mutual inter-
action in the case of edge slo:s. The effect of frequency variation on the
radiation pattern, except for shifting the main beam as indicated in equation
(60), is generally not great as long as the guide is matched. The reflections
from a secondary reflector or discontinuities in the paraiiel plate or horn
system into which the array radiates may strongly affect the impedance and
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efficiency. The seriousness of the reflections depends on whether the
discontinuity lies parallel to the array or along the wave front. In the

first instance the reflections cause little trouble, while in the latter, the
effect is rather serious. 26D

3.2 METHODS FOR CONTROLLING THE APERTURE ILLUMINATION

3.2.1 General Expressions

The following analysis is for shunt slots with negligible external
mutual interaction among slots. For series elements, currents simply
replace voltages and impedances replace admittances. If mutual coupling
is serious, incremental admittance may be used with reasonable success in
the resonant array and,; near broadside, in the nonresonant array.

Figure III-3 is the equivalent circuit representation for a shunt
slot array consisting of n elements, the first being nﬁarest the generator.
Yr = Gr + jBr is the normalized admittance of the r'® element and YL the

normalized admittance of the termination; Y: and Yr' are the normalized

admittances looking toward the load on the right and left sides of the rth
element, respectively; Vr is the voltage across the equivalent transmission

line at the position of the rth element; Pr is the power radiated by the rth

element; and d is the distance between elements.

The equations satisfied by the voltages are

v, (cosh vd + Yr: sinh yd) (63)

Vn-z = Vn-l (2 cosh yd + Yn-l sinh y d) - Vn (64)

and

vV = vr+l (2 coshy d +Y

A 41 %inh yd) -V (65)

where y = a + jB, the complex propagation constant of the unloaded line,

Y ., cosh yd + sinh yd
Y =cl+ Bl I (66)
cosh yd + Yr+1 sinhy d

and
- _ +
Y =Y +Y (67)

The relation between power radiated by an element and its conduc-
tance is readily determined from Figure III-3;

+ pr

G =G’ = (68)
r r P+
Tr
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where

2 .
2T sinh 2ad
pt - p- !—eZad_l_ | r+1l ]

(69)
r r+l 1 - 'r

2
r+1|

and l Fr I is the absolute value of the total reflection coefficient at the rth
element.

It has been shown73 that the ratio of the field across a longitudinal
shunt slot, Es' to the total field across the waveguide is

Es jKlY
— = (70)
Et cos -’-‘-:—

where Kl a positive real gquantity

1]

Y = the slot admittance

x = the displacement of the slot off the waveguide centerline
a = the wide dimension of the waveguide

Equation (70) illustrates an important point: the phase of Es/Et equals

the phase of the slot admittance (plus n/2)., The phase of the slot admit-
tance,

_ B
g = arc tan s (711)

may be determined from the desired phase of radiation, the phase of Vr
and (72).

3.2.2 Resonant Spacing

The design of a broadside resonant array to produce a real (not
compiex) aperture distribution in lossless waveguide is a relatively simple
matter. If the aperture distribution is complex and the guide is lossy, the
problem is more involved; and a number of schemes for its solution have
been proposed. (See References 26c, 74, 87a, and 88.)

For an n element array of longitudinal shunt slots in rectangular
waveguide with an interelement spacing of a half-guide wavelength and

adjacent elements placed on opposite sides of the waveguide centerline,
equation (65) becomes

N-T
V.=V [1+ ad ;’i sYr+s] (73)

where terms of order higher than a d have been neglected. For the usual
case of low attenuation and short arrays, equation (73) reduces to
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In addition, since

G | (75)

n
P Zc.‘;r

_ r _ r-1
Gr—Gn'P;-Pr n (76)
2P
r=1

The input admittance for an open circuit terraination at the end slot is
(attenuation neglected)

n n
Y, = § G, +]J r§=1: B_ (77)

In general, the input admittance is designed to be either unity or a large real
value (overloading). 48 For rescnant slots, Br = 0.

An example of the design of a resonantly spaced array of longitudi-
nal shunt slots with a complex aperture distribution follows:

1) Decide upon the input impedance to the array from the posi-
tion of feeding (end, center, or other) and bandwidth con-
siderations (broadbanding techniques). For this example,
assume an open circuit termination and a desired real input
admittance of unity, that is,

Y. =1.0+jO
in

or
n
216G =1.0, isrw (78)
r=1 r=1
L]
2) Determine the relative phase, “r' and the relative power,

P, required to be radiated by each slot to produce the de-

sired radiation pattern. (See Methods of Linear Array
Synthesis, section 3. 3.)

3) Calculate G_ from equation (76).

4) Calculate a new set of phase angles
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g =0, +9, (79)

where ﬁo is the constant phase change which will result in

n n
2. B =2, G tan (g + ) =0 (80)
r=] r=1
Then
Y =G +jB_ =G, (1 +tan 9.) (81)

Equation (80) is in general a complicated transcendental
equation but since go is the only unknown, equation (80)

does have a solution. If {f'r = 0 for all r, the beam will
be broadside and the slots resonant; if ﬁ; = k@, the beam
will be off broadside.

The values of G, and ¢r will determine the dimensions of the slots .

to be used. If series slots are to be used, the resistance and phase of
each slot will be the same as the conductance and phase of the shunt slots.
To obtain the proper phase of the waveguide field at the slots, adjacent
elements must be given 180-degree phase reversals.

3.2.3 Nonresonant Spacing

The design of arrays using elements with nonresonant spacing has
been given by Watson872, Fry and by Goward26d Watson assumes a pure
traveling wave and indicates the corrections to be made for waveguide
attenuation. Fry and Goward give a more direct approach and also assume
a pure traveling wave but indicate no corrections for waveguide attenuation.
Begovich presents the theory for a nonresonant array without assuming a
pure traveling wave but does not give the corrections for waveguide attenu-
ation. It can be shown that for medium length arrays the wave in the guide
differs considerably from a pure traveling wave and the design is altered
very appreciably from that calculated with the assumption of a pure
traveling wave. For long arrays, the guide attenuation will produce a power
loss which is a relatively large part of the total input power. This situation
is especially true at X- and K-bands.

The voltages for a lossless transmission line are, from equations
(63) and (65),

Vi1 = Va (cospd+ jY; sin g d) (82)

and
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=

Vo=V, (2cospd+ Y  sinpd) -V, , (83)

This expression shows that the magnitude and phase of the voltage at the B
element are functions of both the distance between elements and the admit-
tance introduced at the (r+1)th element.

For the usual cases of slots spaced less than a guide wavelength
apart and for the reflection coefficients small, equations (69) and (66)
simplify to
+

P/ =P, (1 +2ad) (84)

and

o - Yr-+1 cosfB d+ jsinpd

r mcospd+jY;+

1 sinp d (85)
This admittance equation may be solved graphically very quickly by use of

thﬁ Smith Admittance Chart. The reflection coefficient to the right of the
rth slot is

r+. pr- e-Zyd - It . e-Zad
r  r+l T r

(86)

a =0

This relation shows that, compared with the case in which the attenuation is
zero, only the amplitude of the reflection coefficient at the rth slot is
altered by transmission line attenuation. If it is necessary to take attenu-
ation into account, equation (86) may be used.

For a pure traveling wave and no mutual interaction, the phase of
radiation can be controlled by the slot position along the guide and/or by
the phase of the slot admittance. Since the measurement of incremental
conductance depends on the presence of a number of slots of equal conduc-
tance and spacing, control of phase by slot position is not feasible in the
presence of mutual coupling except for uniform progressive phase (that is,
equally spaced slots). Figure III-4 illustrates a graphical method for
determining slot spacings; if the guide is not matched, the phase does not
vary linearly in the guide and a correction must be madel5,

The following is an example of the design procedure for an n-ele-
ment nonresonantly spaced array of longitudinal shunt slots.
1) Determine the relative phase, ﬁ;, of the field and the rela-
tive power, Pr’ to be radiated by each slot (see Methods of
Linear Array Synthesis, section 3. 3).

2) Determine the spacing between elements based on a knowledge
of the required phase shift and waveguide dimensions, the de-
sired position of the main beam relative to the normal to the
array, bandwidth considerations, etc.
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‘ 3) Except for a few special cases, the termination will be a
match to the waveguide,

ey vR, Tl

4) To insure good input admittance properties for a short
array and a broadband matched operation for long arrays,
the normalized admittance of the nth slot, Yn, is made 0.1

o e e BT

or lower.lo The greater the conductance of the last slot,
however, the less power will be lost in the load.

: 3 » é
5) Calculate the admittance Y _; and the voltage V_ _, using §

equations (68) or (85) and (63) or (82), respectively, de-
pending on whether or not the waveguide attenuation is :
negligible. For the array with a matched termination :

Yo=Y +1.0 (87)

Lo+ TROORNET e SRR T RS 0 TE

6) Using equations (66) and (67) or (84), calculate G,.1

+ Pn-l *
Sno1 = Gt BE (88)

where

N R e MR

+ +
Pn-l - Pn + Pn (89)

C under the assumption that the waveguide ailenuation is zero; ]
F;" is the power dissipated in the termination and is obtained

from equation (66).

o S TR

7) The phase of the admittance of the (n-1)th slot is

¢n-l = arc tan Gn_-l (90)

n-1
¢,,., is found using equation (70), step 1, and the results of

step 5, taking into account the progressive phase shift de-
sired.

W o R 151 e DRI YA <1

8) The other Gr and ’r are determined progressively in a

similar manner.

3.3 METHODS OF LINEAR ARRAY SYNTHESIS

B % ol i o il oA

3.3.1 Introduction

Methods for effecting a specified amplitude and phase distribution
on a linear slot array have been described. The present section will be
concerned with prescribing an amplitude and phase distribution to produce

(‘ a specified far field radiation pattern. Only parallel linear arrays will

PR
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be considered. (See the Element Factor, section 2. 1.) A two-dimensional
array can be designed by considering it to be a linear array of linear
arrays. Nonparallel arrays are described elsewhere in the literature.
This process, known as array synthesis, is the inverse of array analysis,
and is, in general, rather complicated*. However, a number of reason-
ably successful methods of array synthesis have been devised and a few of
them will be described. Only the methods will be presented; the mathe-
matical justification can be found in the appropriate reference.

A working knowledge of array theory is assumed here. 64 It may

be worthwhile, however, to recall a few important concepts pertinent to
the discussion to follow.

1) The far field radiation pattern of an antenna oriented in
space with respect to some coordinate system is the field measured on a
sphere (or, for a pattern in a principal plane, on a great circle of the
sphere) of large radius centered at the origin of the coordinate system.

2) The radiation pattern of an array can be expressed as the
product of two factors, the element factor and the space factor. The ele-
ment factor is the radiation pattern of an element of the array, ** and the
space factor is the radiation pattern of the array with the elements of the
array replaced by isotropic radiators. Only synthesis of the space factor
S is of concern in this discussion. The effect of the element factor, E, on
the array radiation pattern, R, can be taken into account by the relation

S =% (91)

in which R, E and S may be complex.

3) The relationship between the space factor and the aperture

distribution, A, for a linear array of N egually spaced discrete elements
can be written

s(vy = ot Y B Amejkm‘i( v/ (92)

m=0

*Aperture distributions to produce suitable patterns are often determined
empirically; one calculates the pattern produced by some distribution and
notes how closely it approximates the des red pattern.

**In certain instances where the elements of an array are subject to mutual
interaction by their neighbors, the element factor is the pattern of an ele-

ment measured in the presence of all the other radiators in the array.
(See Reference 59.)

45

S L s




|
i
¥
1
‘
i
b
b
<

C

il i

where S(V) is a complex number proportional to the field strength at a
pointJ/ on a great circle in the plane containing the array on an infinite
sphere centered at the origin. Am is a complex ccefficient to which the

currents at corresponding points in the several elements are respectively

proportional (the phase of A__ is measured with respect to the uniform
-jk.md

progressive phase e 1 % k is the free space phase factor (=2n /) );

k, is the array phase factor (=2n /A 1); A, is the wavelength along the array;

V= cos 0; and the remaining symbols are defined in Figure III-5.

4) For a discrete array with an odd number of elements, N,
centered at the origin, equation (92) becomes

jetm - 522y a (v -k, /)

N-1
S(V) =2 A e (93)
_ . m=0
where Ao is the excitation coefficient of the element farthest to the left, or
N-1 y
4 jkmd( ¥ -k, /k)
- 1
S(¥) = E A e (94)
R m_N-l
C - =
where A(J is the excitation coefficient of the central element,
5) For a discrete array with an even number of elements, N,
centered at the origin, equation (92) becomes
N- jk(m-51) d (¥ -k k)
S(¥) = A _e (95)
m
m=
where Ao is the excitation coefficient of the element farthest to the left, or
N- Ppk G (¥ -k /)
S(v) = A e for p odd (96)
p= -N-1 P

where p = 2(m - -Nz'-].‘) and A_1 and Al straddle the origin.

6) The space factor of an array with a continuous distribution
centered at the origin is given by
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S(V) = Ia Ax)e J&x(V -k, /k) (97)

¥ where A(x) is a complex number to which the currents at x are proportional,
x is the displacement from the origin along the array, and 2a is the length
; of the aperture.

; 7) The power pattern S( V) S¥(¥ ), where S¥( V) is the complex
conjugate of S{ ¥), is not affected by the position of the array with respect
to the origin. The phase of S( ¥) is, however, dependent on the position of
the origin,

8) It can be shown from equation (92) that

pgeRss T ot T monnt ot T

I S(¥+ qk/’d)' = l S(V)l ,q an integer (98)
In words, in a linear array of discrete equally spaced elements, l S I is
periodic in the variable ¥ and repeats itself at intervals of A/d. Although
| S| has a period of A /d, S may or may not be periodic with period A /d.
Thus, from equation (92) it can be shown that for x =r-d (r an integer)
3
i S{¥+q A /d) = S(¥), q an integer (99)
‘ That is, for an array with an odd number of elements, one of which is cen-
(“ tered at the origin, S(¥) has a period A/d. From equation (92) it can also
- be shown that

S(¥+q21/d) = S(¥), q an integer (100)

. orw cea gy

That is, for an array with an even number of elements, one of which cen-
tered at the origin, S( ) has @ period 2\ /d. (See Figure III-6.)

" 9) For a continuous array (é—0), S(¥) is not necessarily
periodic. (The period is infinite.)

10) The physically significant portion of S(V) is in the region
-1=S V=<1, the so-called ''visible" region or '"real" space. Outside the
visible region, O takes on imaginary values and S(8) cannot be measured
physically. (See Figure III-7,

11) If a linear array has a space factor S( /), the same array
with progressive phase shift will have a space factor Sl( V), where
Sl( y)=§( V—kl/k) (101)

and kl is the progressive phase shift constant; that is, the pattern will be
shifted in V-space a distance - kl/k.

|
!
§
|
i
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12) In general, there is more than one aperture distribution
which will produce a given 5( Z/)l . There is, however, only one aper-
ture distribution that will produce a given S( ¥ ), for the general case when
S(7) is complex: the field phase variations on the sphere centered at the
origin are specified.

13) A number of investigators have shown that it is theoretically
possible to design an array of given length to have any continuous single
valued pattern whatever. The use of the proposed methods to produce high-
ly directive antennas of small size is known as supergaining and has been
widely discussed in the literature. (See References 8, 11, 57, 78, 91, 93,
and 96.) It has been shown that high gain supergain antennas are physically
unrealizable due to their extremely low eliiciency, narrow bandwidth, and
high tolerance requirements. The designer should not.fall into the trap of
using supergain techniques in order to get more directivity or shaping from
a given aperture length than is practicakle. On the other hand, mild forms
of supergaining are quite useful, for example, the Hansen-Woodyard cri-
terion3l and the mild supergaining of short low gain arrays. Taylor83 has
devised a supergain index which will be helpful in determining if the degree
of supergaining is prohibitive. For discrete arrays this index is

N-1 2 n 2
anZ=0 Al J:u |s| dy

= R T T (102)
Ikdlsl dy f-kd |s|2ay

where ¥=kd cos 0; for continuous arrays the index is
a 2 © 2
anj g(x)l dx f Isw)l 4y
- -8 _ - Q0

. = -
_[:Isw)lzdv I:|8(7)|zdv

where ¥ =cos 0. For ordinary arrays, ¥ is very nearly unity; a slight
amount of supergaining increases its value very rapidly, however, and
should serve as a danger signal to the designer. A value of ¥ = 10 may be
stated arbitrarily as the maximum allowable ¥. It should be noted that
when there are several different arrays which produce identical power
patterns, the value of ¥ associated with each of these is the same.

(103)

14) In the synthesis problem, the complex field pattern, S(¥),
the magnitude of the field, | S( V)' , or the power pattern, S(¥ ) S*(V¥) =

i S( V)I ¢ may be specified. K| S(V) | is specified, a phase value may be
assigned arbitrarily at each value of ¥ to obtain a satisfactory complex
S(¥). The choice of the arbitrary phase values will, in general, affect
the closeness of the synthesis approximation: there is an optimum set of
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vhase values for the field pattern, which allows the aperture to be used
most efficiently. Thus, if a certain phase distribution in S(¥) is not re-
quired, it is not an efficient procedure to assign phase values arbitrarily
to l S(¥)| . There are, in fact, methods for synthesis which require
only the specification of | (¥} | in which the phase of S( V) is allowed to
take on the optimum values. From the standpoint of economical design,
these latter methods are preferable to those which require an arbitrary
statement of the complex field pattern S{(/)* On the other hand, the
methods which require an arbitrary statement of the phase of S( ) may
be simpler and quite satisfactory. Ifl S( V)| is given, one procedure is
to assign a phase of zero to S(2/) and allow the magnitude of S( V) to take
on positive and negative values; that is, let S( /) be positive on the main
lobe, negative on the second lobe, positive on the third, and so on.

It will be found that all synthesis methods for slot arrays are
dependent on equation (92). However, for long arrays (say more than 20
elements), the task of determining the Am becomes arduous. For the

sake of simplification, it is often assumed that a long array of discrete
elements can be approximated by a continuous array. In other words,
equation (97) is solved for A(x) and the values of A(x) at the x's corres-
ponding to the element displacements from the origin are identified as the
excitation coefficients for the corresponding elements. The validity of

the approximation depends on how closely the S( /) for the continuous
array approaches the S(V) for the discrete array in real space (-1S¥<1).
As can be seen from Figure III-7, the closeness of fit depends on the
directivity (narrow beam and tapering sidelobes ) of S( %) and the ratio
A/d. Thus, for a directive S(%/), tapering sidelobes, and large \/d the
approximation is usually good. In a slot array the elements are generally
spaced less than d= A to avoid two or more main lobes in real space}* and
in many cases d= \/2; further, the pattern of a long array is usually direc-
tive. Thus, for most practical arrays the approximation is a good one.
Therefore, in the following discussions both discrete and continuous arrays
will be treated.

3.3.2 Arrays of Few E'ements: Discrete Array

The Dolph-Tchebyscheff Array

In many radar applications, it is desirable for the antenna to
possess a power pattern, which, if the sidelobe level is specified, has a
minimum beamwidth or, if the beamwidth is specified, has a minimum

*A striking example of the economy involved in the optimum phase design
is presented in Appendix I.

*%*If the element factor is reasonably direc:ive, the spacing may be greater
than d=A and the pattern will not exhibit more than one main beam.
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sidelobe level. A broadside array with d =>)\/2 having such an cptimum
pattern together with methods for the calculation of the required amplitude
distribution has been described by C. L. Dolphl7 and others. (References
5, 41, 56, 71.) The development of the method is based on the character-
istics of the so-called Tchebyscheff polynomial,

T (x) = cos(n * cos'lx) for |x|=<1
n (104)
Tn(x) = cosh(n * eesh_lx) for |x|=>1

which can also be written as a polynomial of degree n. The Tchebyscheff
polynomial has the following properties:

a) It has n zeros all within the interval -1 < x <1,

b) Its absolute value falls between 0 and 1 in the interval
-1Z=x=1.

c) It approaches infinity as x” in the interval !xl >1.

Figure III-8 illustrates the shape of T4(x).

The space factor of an N element Dolph array is given by
Sn(¥ ) =Ty (2 cos %) (105)

where ¥ =kd ¥, ¥ = cos 0,and Z  is a constant which will be defined later.

Equation (105) is illustrated by a graphical construction in Figure III-8
which depicts T4(Zocos ¥ /2) and shows how Ss(v ) car be found. Figure

III-9 shows tle space pattern of an 8-element optimum array. SN is a real

space factor which can be represented by a real polynomial; the excitatior
coefficients for the elements are real and symmetrical about the center of
the array.

The most recent method for calculating the excitation coefficients
has been suggested by van der Maas.4l This method will be described
below.

We define a quantity Zo in terms of the required main beam-to-
sidelobe voltage ratio, r, and the number of radiators N by

TN-l (zo) =T (106)

Zo can be written explicitly. as

1 1 o
[(r + Vri. l)m+ (r - ‘\/rz-l) N_:I_J (107)

Z:l
o 2

or
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Z = cosh (N'III arc cosh r) (108)

If adequate tables of the hyperbolic cosine are available, equation (108) will
be easier to calculate than equation {107). If we number the N radiators
from left to right, 1, 2... K... N, the series for the relative current in

the Kth radiator, Ig, is given by

o | N-K
1N = 2_ |— :\[K ] a5t for K#1 and K¢#N (109)

S=0 [ S+1

It =1 for K=1and K=N (110)

NE=
b b.(a-b)’

The variable a is given by

where

z2 .} 2 1/
a= -2 _ =tanh? | 17 L"”" -1)}/4 (111)
zZ N-1
o

The series terminatesfor S=N-K-1if K2 (N + 1)/2andforS=K -2
if KS(N + 1)/2 It is interesting to note that the special case 1/r = 0 (no
sidelobes) gives the binomial distribution (excitation coefficient equal to the

coefficients in the binomial expansion of (c + d)N l)

IN = I:;f: ] (112)

The special case r = 1 (no main beam) gives an array in which

1 N

Iy=1,IN=1and I =0for K#1and K¢ N (113)

The procedure, then, for the design of a Dolph-Tchebyscheff array
is as follows:

a) Having specified r, determine a from the second equation in
(111) or by substituting for Z  in the first equation in (111).

b) Determine the excitation coefficients Illg by summing the
series (109).

(Dolph, Riblet, and Barbiere also indicate a method for finding I§ given the
beamwidth to the first nulls rather than the sidelobe level. This method will

' 51

PR ]




R XY . . . N - B B .. pre e raa m = TR T ISR oE

t not be presented here. However, a useful curveS? for the halfpower beam-
‘ width versus the sidelobe ratio is given in Figure III-10.)

The excitation coefficients for a number of specific Tchebyscheff
arrays have been tabulated by Dolph in his first article and others have been
calculated and tabulated at the Hughes Aircraft Company. The latter tabula-

tions are presented in Appendix B, complete with the Zo and gain for each
array.

There are two limitations on successful design: the main beam is
broadside and d=A /2. It is possible, by assigning the correct progressive

phase shift with constant kl to the excitation coefficients, Ilié, to aim the

main beam in a direction ¥ from end-fire according te the relaiion

@ = arc cos kl/k (114)

For 0 inear 0°, the end-fire position, it is possible to obtain a narrower
heamwidth thun indicated by a Tchebyscheff analysis by instituting super-
gain tactics {(for example, the Hansen-Woodyard criterion) so that the Dolph-
Tchebyscheff array is no longer optimum. Similarly, if the spacing, 4, is
less than ) /2, it is possible to supergain the array in order to narrow the
beam and/or lower the sidelobes; thus, the Dolph-Tchebyscheff array is

not optimum for d<A\ /2.

(“ Shaped Beam: Field Strength Pattern Specified in Magnitude and Phase

Fourier Series Method (References 34b, 61, 94); By extendin
the limits and stationing the center of the array at the origin, equation %94)
can be written for an odd number of elements as

Q0 .
coy L jm
S(y) = g A_e ¥ (115)
in which
¥ = kd(¥- k /k) (116)

and S(V¥) and A A may be complex numbers. For an even number of elements,
the equations are much the same with the exception that there is no Ao term,

that is, no '"d-c' term. Generally, however, there is no advantage in de-
signing an array with an even number of elements rather than one + 'th an
odd number. If S(¥) is a well-behaved function and is periodic with period
2R, it can be expanded in a Fourier series, where the Fourier coefficients,
A _, are

m

m g

A =1 J'n Sty Je TPV 4y (117)
- )
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If
A_=a_#jb_ (118)
and
= A%
A_=A* (119)
then S(V¥ ) is real; if
- *
A =-A7 (120)
then S(¥) is imaginary. Thus, equation (115) can be written
PN jmy
ReS(¥ ) = A'me (121)
m= -0
S jooy
ImS(y ) = > An e (122)

where A'  obeys equation (119) and A"  obeys equation (120), the relations
(121) and (122) can be wriiten in the more familiar form

ReS(y ) =2 fﬂ+ i [' cos my + (-b' )sinmv] (123)
Z &

ImS(y ) = 2 ; [ sinmy + b!! cos my] (124)

a " b"
where A' = a' + jb' A" =ap + Jb" A' = -22 and A" = 3-2-

Equations (123) and (124) are Fourier series in which the al 's and (-b;n)'s

and the a'r'n's and b;_'n's are the Fourier coefficients which can be found by
well known means.

The procedure, then, for synthesis by this method is:

1) Separate S(V¥ ) into real and imaginary parts.
2) Find the Fourier coefficients for ReS(y ) and for ImS(y )
in (123) and (124)
3) Determine A and A;‘n from the coefficients found in step 2.

4) Determine A fromA__ = A’ + A"
m m m m
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The pattern will be reproduced exactly only for an infinite number
of elements. In the practical case, however, the number of elements is
finite and the Fourier series, (123) and (124), will have only a finite number
of terms.

The reader will notice from equation (116) that for d<<\A /2 the range
of ¥ is less than 2n radians for -1< V<1 (0<0<n ); for d = )\ /2 the range
of ¥ is 2n; and for d>\ /2 the range of § is greater than 2n . In fact, the
range of ¥ is

v = 2kd (125)

for 0<O0< n. If the space factor, S(0), is defined for 0 < 0 < n the space
factor, S(V ), will be defined for

-kd(1 + k) /k) <y < kd(1 - kll/k) (126)

- - *
that is, S(y) will be periodic with period y =2 kdor ¥ = -3- . The rules

associated with the Fourier series (123) and (124) require S(¥ ) to have a
period of 2 n radians. Thus, for y<2n(d< A /2), S(y ) is specified only
over a portion of the required 2 n radians and the function used to fill in

the remainder of the interval can be chosen by the designer. It will be found
that certain choices of ''fill in" will be more satisfactory than others from
the standpoint of the closeness-of-fit of the synthesized pattern to the re-
quired pattern and/or simplicity of the equations. A trial and error process
is usually used to determine the best "fill in" function. If ¥ = 2n (d = \ /2),
the required interval will be filled by S(¥ ). If ¥ >2n(d>\/2), S(y) will
not fit the 2R radian interval and this method cannot be used except in
special cases, ** for example, if S(0) is specified over a limited range in 0
(less than n radians).

Analog to Woodward's Method***: Another method which might be
used in the present situation is an analog to Woodward's method which will
be discussed with shaped beams (page 59). Application of Woodward's
method to the present problem is not difficult. Figure IlI-11 gives a pictorial
explanation of the method.

The important difference for the discrete case is that S(¥) is ex-
pressed as

. *For an array with an even number of elements, ¥ = 4kd and ¥ = 2\ /d as
noted in the Introduction. However, the symmetry of S(¥ ) in its period is
such that the arguments to follow for an odd number of elements are not
contradicted for an even number of elements.

**See Reference 94, page 639. Note use of d

= 2k.
***Suggested to the authors by T. T. Ta',rlor.l
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Nkd( ¥ - Z/O)
A  sin

- n 2
S(V) = Z T (127)

N sin

Equation (127) is transformed to (140) (page 60), when N — o0 and d — 0,
that is, when the array becomes continuous.

Shaped Beam: Power Pattern Specified, Field Strength Phase Arbitrary

It is apparent that the methods for controlling the aperture illumi-
nation (section 3.2) can be made applicable in the present case by the simple
expedient of assigning an arbitrary phase, say, zero, to the square root
of the power pattern. Thus, the synthesized space factor,

s(v) = b () = |s(v)] (128)

where § (V) is the power pattern and is real. The methods to be described,
however, are those which afford the optimum phase.

Circle Diagram Method (References 61 and 79): If the phase of
the field pattern is not specilied, it is uneconomical (design-wise) to use
a synthesis method which limits the design to arbitrarily chosen field phase
patterns, especially for arrays of few elements’?. The circle diagram
method provides an efficient means of synthesizing an array when the phase
variation of the field pattern is not specified. The power pattern iz approxi-
mated by the synthesis and the phase variation of the field pattern is allowed
to take on any values necessary to reproduce the power pattern.

If the substitution

vV =kd( ¥ - kl/k) (129)

is made, then equation (92) can be written

x
. .9, N-1 .

sy)=el TV a_ ™Y (130)

m=0

If further substitution is made so that

Z=x+jy=rejv (131)

where r = 1, then equation (130) can be written

X
— N-I m
sz)=2 % 3 A_zZ (132)
m=0
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(_ By the fundamental theorem of algebra, the polynomial in (132) can be
written in terms of its N-1 linear factors:

*o

o

S(z)=2 © - Ay, (2-2\)(2-2,) ... (Z-Z_,) (133)

Thus, the equation S(Z) = 0 has N-1 roots given by Z = z.. and, in addition,
x
a root of multiplicity -g- at Z = 0. If these roots are plotted in the complex

plane as shown in Figure II[-12A, it is apparent that the value of S(Z) is
proportional to the product of all the vectors which connect the peint Z = e‘w

to each of the roots. The locus of e’¥ is the unit circle, as indicated. It
is obvious that the magritude of S(Z) is not affected by the presence of the
root at the origin or its multiplicity; a root at infinity is also ineffective as
far as producing changes in the magnitude of S(Z). Orly roots near or
upon the unit circle contribute changes in the magnitude of S(Z) to a signifi-
cant degree.

Thus, the design procedure is:

1) Place a few roots judiciously in the complex plane and then
determine SX(Z):

|s1(z)| = IAn_ll !(z-zl)l - I (z-2,) ... I(Z'ZN-1)| (134)

ﬂ\‘

(A scheme for simplifying the calculation in (134) is to take the logarithm of
(134) and measure ‘ (z -Zn)l with a logarithmic scale.)

2) Relocate or add roots by trial and error until | Sl(Z)I = IS(Z)I

3) Expand the product (134) obtaining the polynomial form (132)
and the excitation coefficients Am.

If the number of elements is not too large, the designer will, with
some practice, be able to predict the effect of placing the roots at specific
locations in the complex plane. Taylor and Whinnery, in their paper,79 have
listed a number of theorems which will help to give the designer an insight
into the problem of placing the roots. A few simple rules will be stated here:

1) Roots at the origin or infinity are useless.
2) Roots on the unit circle have the greatest effect on S(Z); in

fact, a roct upon the unit circle will produce a zero in S(Z) as el¥ passes
through it.

3) If any or several roots are moved to their respective image
~ points, the relative variation of | S(z)| on the unit circle is unchanged. The
(_ image point of any complex number Zn is defined by l/Zn*, which occurs at
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the same polar angle as Z but has a magnitude which is the reciprocal of
the magnitude of Z.

4) If all the roots of $(Z) lie on the unit circle, the solution to
the array problem is unique; that is, there is only one disposition of the
roots which will reproduce S(Z)' . If, on the other hand, some (one or
more) roots lie off the unit circle the solution is not unique; that is, some

roots can be moved to their image positions thus changing the excitation
coefficients but not affecting lS(Z)I .

As an example, in the circle diagram for an eight-element uniform
array shown in Figure III-12, the seven roots are equally spaced around the

periphery of the unit circle, with the exception of the point 1 + jO at which
no root occurs.

It has been pointed out previously that the range of y depends on
the interelement spacing, d. It is possible, by using smal! values of
d{< X\ /2) and strategic placement of zeros, to obtain surprisingly high
values of gain. This technique of using a small value of d to obtain a
visible range small in comparison with a period of | SI and then adjusting
| S| by placement of the roots so that it exhibits considerably more direc-
tivity within this range than without it, is kncwn as '"'supergaining'' the
array (see page 48).

For an array of more than 10 elements, the synthesis method
described above is long and laborious. Taylor and Whinnery, however,
have devised and built an analog device which operates on the principle of
the circle diagram method. The roots are mechanically moved about on
the complex plane and | S(Z)| is observed directly cn an oscilloscope. With

this machine an experienced operator can synthesize a pattern in short order
without excessive computation.

3.3.3 Arrays of Many Elements: Apprcxzimated by a Continuous Array

Narrow Beam and Low Sidelobes

?

The Dolph-Tchebyscheff Envelope: The Dolph-Tchebyscheff array
for discrete elements has been described in the discussion of discrete arrays
(section 3. 3. 2); the continuous case remains for consideration. It has been ob-
served that, for a given sidelobe ratio, the normalized excitation coefficient
values, when plotted with respect to the normalized displacements of the
corresponding elements from the center of the array, tend to lie on the same
smooth curve (called the envelope of the excitation coefficients) as N, the
total number of elements, is increased. This phenomenon is illustrated in
Figure III-13 in which the excitation coefficients for four 40-db arrays with
12, 24, 48 and 144 elements, respectively, are plotted. The excitation
coefficients for the four arrays are normalized, in this case, to a value of
unity at the center of the array, and the displacements of the elements are
normalized so that the elements for each of the four arrays are equaliy
spaced in the region -1< X< 1 where X is thc normalized displacement
from the center of the array. With the envelope curve shown in the
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illustration, th( excitation ccefficients can be found for any 40-db Dolph
array having more than 24 elements. For an N-element 40-db array, the
region -1< X< 1 is divided into N-1 equal segments by N graduations.

At each of these graduations, read from the curve the corresponding nor-
malized (relative) excitation coefficient. Since the end elements do not
appear to be related to the envelope (see Figure III-13), a different method
is necessary to determine the coefficients for these elemaznts.

A number of methods have been suggested for the determination of
the envelope curve. Van der Maas4! and Taylors6 independently arrived
at an analytical expression for the envelope curve:

oun) - na? 23,[ ia Inz - %]
* iA a2 - p? '

where cosh TA = r = the voltage sidelobe ratio
p = 2ws/L , is a variable running from -v to v
s = the physical distance from the center of the array
A = the length of the array.

(135)

Here J1 is 2 FL.sel function of the first kind, the values of which have been

tabulated for imaginary argument® The envelope function, g(p,A), for a
40-~db sidelobe ratio has been plotted in Figure III-14, and calculated values
of the excitation coefficients for a 24-element 40-db Dolph array are dis-
played on the graph for comparison. The excitation coefficients for the 24-
element array were normalized so as to be equal to the envelope at the cen-
ter of the array.

A method for approximating the envelope curve has been derived
empirically by Bailin and others4 The approximation is

2
g(x)= [Ax4 + Bx® + 1 ] (136)
where

A =0.0861 cosh™lr - 0. 228
-B = 0.225 cosh-1r - 0. 240

and x is the displacement from the center of the array normalized so that
x varies from -1 to 1 for an array of length £. In effect, equation {136)

*See Jahnke and Emde, Tables of Functions, Dover Publications, New York,
1943, pp. 227ff; British Association Mathematic Tables, Vols. VI and X,

The University Press, Cambridge, 1952; National Bureau of Standards,
Tables of JO(Z) and Jl(Z) For Complex Argument, Columbia University Press,

New York, 1943.
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is a polynomial approximation for equation (135). It has been shown that
the approximation is good (less than 5 percent error) for most practical
arrays. The designer should be aware of the fact that the error in effect-
ing a given aperture distribution for a slot array is in excess of 5 percent
in most cases. It should also be noted that g in equation (135) or (136)
need not be plotted to find the excitation coefficients of an array; the values
of g can be computed only for values of p or x corresponding to element
positions on the array.

The ampiitude distribution for a Dolph array is discontinuous at the
ends. For a very long array, the value of the amplitude at x = -1 and x = +1
becomes infinite with respect to the values at intermediate positions, but for
all other values of x the amplitude is given by equations (135) and (136). In
the case of a finite array, the excitation coefficients for the end elements
are finite and can be found in terms of the next to last element by an exact
analytical expression which is de-ivable from eguation (108). The expres-
sion for an N-element array is

7 2
111\1 = IE = Iﬁ'l ° (137)
(N-1)(z 2-1)

where III\I and III: are the excitation coefficients for the end elements and Zo
is given by equations (107) and (108).

Taylor's Method (Reference 80): It is apparent from the preceding
paragraph that a continuous Dolph antenna is not physically realizable due to
the infinite discontinuity in the distribution at the ends of the aperture.
Furthermore, a discrete Dolph array of very many elements may also be
physically unrealizable because the excitation coefficients of the end ele-
ments will be very much higher than the coefficients of the intermediate ele-
ments. T. T. Taylor has suggested the use of a modified Dolph-Tchebyscheff
pattern as the optimum in this situation. In the modification, the sidelobes
are allowed to taper off at some arbitrary distance from the main beam.

Shaped Beam: Field Strength Pattern Specified in Magnitude and Phase

Woodward's Method (Reference 92): It is well known in antenna
theory thal the pattern of a uniform continuous array of half length
a(= L. /2) and aperture amplitude A is

sin ka( ¥~ yo)

S(¥)=2ka- A
ka{y- 1/0)

(138)

where Vo = cos Oo = kl/k and 00 is the position of the main beam from end-

fire. S(7) is shown in Figure [lI-15 with a = 2,5A. It is noticeable that
the zeros are equally spaced except for those on either side of the main
beam which occupy two '""'spaces. The width of one space is the reciprccal
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of the aperture lehgth in wavelengths, from which it follows that the beam-
width for a broadside uniform array at the first nulls is inversely propor-
tional to the length of the aperture (B.W. =\ /2a). I we choose Y, equal

to an integral number of nominal beamwidths, that is, 2/6 =n X/Za, then
the inverse transform of equation (138) is

g(x) = Ae-jnﬂ’x/a for -a<x<a

(139)
g(x) =0 for a’>1

in which A represents the uniforrn amplitude and the exponential represents
the uniform progressive phase shift.

The Woodward method involves the expression of S as a finite sum
of N + 1 component functions of the type (138):

- g2 sin ka(¥- n)\ /2a)
S(V) = 2ka n;—N/ZZ Ay e Te (140)

The summation in equation (140) may be regarded physically as the super-
position of N + 1 uniform array patterns each with its characteristic direc-
tion given by I/n =n\/2a. The relative spacing of the characteristic direc-

tions by integral rnultiples of A /2a (one ""beamwidth') insures that the
principal maximum of each component pattern coincides with the zero of all
others (see Figure III-15). The pattern value at each characteristic direc-
tion is thus uniquely related to the corresponding A , and the A canbe

found by requiring that the total pattern have prescribed values at the charac-
teristic directions. Thus, the aperture distribution can be written

N/2 .
g(x) = S /: Ae -jnnx/a for sz a?
n=-N/2

(141)

g(x)=0 ' for x> =a?

where
1

AT rem [S(y) ]V = n) /2a (142)

The design procedure is:
1) Determine the N + 1 values of S(¥) at ¥ = n i /2a for -1S¥<]1.

2) Substitute the values found in step 1 into equation (142) to de-
termine the An's (the factor 1 /2 ka may b= set equal to unity since the aper-

ture distribution is a relative matter).
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t 3) Substitute the A 's into equation (141) to determine the

aperture distribution. Notice that S(¥) in equation (140) may be complex,
in which case An may also be complex, although we have tacitly assumed

An to be real by referring to it as an amplitude.

We have pointed out previously that the synthesized pattern will

{ coincide with the desired pattern at N + 1 points where N/2 = 2a/A . In

' . some situations, S(¥ ) will not be defined at one or more of the N + 1 points
(see Figure III-16). In this case the designer can choose a value for S(¥)
at the questionable points which makes the synthesized pattern approximate
the desired pattern best. A trial and error process is used to determine
the optimum value for S(¥) at the questionable points.

b T

Fourier Transform Method: A Fourier series method has been
described (page52). The Fourier transform method is simply an extension
of the discrete series summation to an integral for the continuous array.

The space factor for a continuous array is given by equation {97).
If A(z) vanishes outside the aperture (a2 > 1), then (97) can be written

g T R e La:

o) .
S(¥) = f Alz) S<2(V-Kk /K) 4, (143)
: -00
' C The distribution function A(z) is the inverse transform of '43):
o .
AR =gy [ eV R/W gy (144)
-00

The integral in equation (144) defines A(z) for 2ll values of z; how-
ever, A(z) can be controlled only over the aperture (-a z<a) and A(z)

must be zero for zz> aZ. In other words, the major portion of A(z) must
fall between z = -a and z = a for a good approximation to S(¥). In general,
this situation is not the case. Thus, the designer should calculate the
synthesized S() produced by the portion of A(z) in the range -a< z<a to
determine whether the approximation is satisfactory.

R. C. Spencer discusses Fourier integral methods of pattern
analysis and synthesis in two papers.®?»

Shaped Beam: Power Pattern Specified, Field Strength Phasc Arbitrary

Extension of Woodward's ‘Method: Taylcr82 has extended Wood-
ward's method so that any given single-valued continuous function can be
approximated arbitrarily exactly rather than simply forcing the approxi-
mating function to coincide with the desired function at a set of points
spaced by integers in the operating range. Further, the extension provides
a method for approximating a real pattern Sr(w) by [S(w‘, allowing the A
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t to become imaginary. It will be seen that this method parallels the cizrcle
diagram method of Taylor and Whinnery (page 55 ) and allows for the opti-
mum phase,

The space factor is written as the product of a transcendental
function, Qn(w), a polynomial, P(w ), and a constant:

| ste)| e CNCI R (145)
ﬂ ‘El
where w = %‘i . The transcendental function, Q_N(w) is given by
2
N
(3)
QN(w) = (146)
N N
(z.+w).'(-z-m).'
' or
Zu)z
: TN
' Qulw) = e for N large (147)

[ It should be recognized that QN(w) is defined continuously for all values of «

C » since the factorial is defined continuously in terms of the ['-function. The
method of synthesis consists in finding the polynomial P(w), of degree nct
greater than N, such that the product | QN(w) , . | P(w)l approximates the

desired pattern (here the constant factor has been set equal to unity for the
sake of convenience). The nurber of the zéros of P(w) may be less than,
equal to, or greater than 4a/A (the value prescribed in Woodward's original
method). If N/2 >2a/) , it is possible to approximate any pattern or func-
tion arbitrarily exactly by concentrating these zeros in the operat‘m<g region
rather than by distributing them uniformly in the region -N/2 < w < N/2
which, for N/2 > 2a/\ , includes botk real and imaginary space. This tak-
ing of zeros from imaginary space and concentrating them in real space is,
of course, a supergain techniquz and is generally undesirable. To avoid
supergaining, N should be chosen so that

-‘12‘ < 2a/a (148)

The real advantage of this method is that an optimum field phase
can be found: the phase distribution in the field pattern which allows the
aperture to be used most efficiently. This effect is accomplished by allow-
ing the P(w) to be complex and varying the positions of the zeros in the
complex plane such that (145) is satisfied. A convenient method for finding
P(w) such that | P(w)] approximates a given function is the potential analog
method described by Taylor .and Wh‘mnery79. This method is similar to the
method of placing zeros in the complex plane for the circle diagram method;
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here, however, interest is in the profile on the real axis rather than on the
unit circle. There are, of course, a great many methods for approximating
a function by a polynomial, but there are no simple analytical methods for

finding the best complex P(w) which is required for the most efficient use of
the aperture.

When P(w) has been obtained, the calculation is completed by find-
ing the An. These are given by:

-~ A= —r—r [ Oy@P@)] (149)
n (.2.') =

w=n

{‘inally, the aperture distribution, g(x), may be calculated from equation
141).

This method, like the circle diagram method, is difficult to employ
because of the trouble in finding the polynomial. The potential analyzer,
however, simplifies the problem to a large extent and, in the case cf shaped
beams (versus directive beams), the use of this rather complicated technique

may be warranted by the more efficient use of the available aperture length
which it provides.

Geometrical Optics Method: Principle of Stationary Phase: An
antenna with an aperture much larger than a wavelength and a phase distri-
bution such that all of the energy in the aperture is radiated into real space
(a nonsupergain antenna) can be analyzed by optical methods. In 1943,

L. J. Chul® fcrmulated design equations, based on optical ccnsiderations,
which were used extensively to determine the shape of a cylindrical reflec-
tor and the primary feed pattern required to synthesize a shaped beam.

A. S. Dunbarl9 extended this method to doubly-curved reflectors. More
recently, Dunbar has taken a different approach to this problem, using the
method of stationary phase, and has shown that the two results are equiva-
lent. 20 Synthesis by this optical method requires the specification of the
required power pattern, P(0) = S(0)S*(9), but does not allow for the optimum
field phase. Nonetheless, Chu's method has been very successful with re-
flector-type antennas and is equally useful for linear arrays due to the sim-
plicity of the mathematicai manipulations involved.

The technique is to choose an arbitrary amplitude distribution, A(x),
usually a simple even function, and then apply the following design equations
to determine the required phase along the aperture. The equations are:

w(x) = cos 0 (159)

and

sin OP(G) do = 2n £2 (0) A%(x) dx (151)

where p(x) = 2/ g(x) = C/V(x); xg(x) and V(x) are the variable wavelength
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and velocity respectively aiong the array; P(@) is the power pattern for 0
measured from endfire; A(x) is the amplitude distribution; £(9) is the ele-
ment factor; and x is measured along the array from the center.

The wavelength, Xg(x), or velocity, V(x), along the array can be

controlled in a number of ways: by the use of ridge waveguide to feed the
slots in the array or by curving the array from a straight datum line (the
x-axis) along which kg(x) or ¥V (x) is measured. This latter method is

convenient for the design of linear arrays on curved surfaces.
3.4 PRACTICAL CONSIDERATIONS AND MEASUREMENTS

3.4.1 Effects of Manufacturing Tolerances

A finished array, although properly designed, may not meet design
specifications due to inaccuracies in the mechanical construction. The de-
signer has two alternatives in this situation: 1) he can over-design the array,
or 2) he can insist on tighter shop tolerances. The first alternative leads to
inefficient array design and the second results in high manufacturing costs.
In order to make an intelligent compromise, the designer needs quantitative
data on the effect of more stringent tolerance requirements on the probability
of the antenna pattern meeting design specifications. This problem has been
attacked for certain special cases (References 1, 42,and 60).

Bailin and Ehrlich describe a first-order statistical method for ve-
lating shop tolerances and pattern deterioration for a symmetrically excited
broadside array for which there is no correlation among the radiations of
the eiements (that is, for which mutual coupling is negligitle). As an
example, a 24-element linear shunt slot array excited according to the Dolph-
Tchebyscheff distribution was analyzed. The three actual array dimensioas
(slot length, L; interelement spacing, d; and displacement from the centerline
of the broad face, x) which affect the pattern were assumed to have values
clustered about the design value (according to a normal distribution) for a
large number of similar arrays. The standard deviation for the normal dis-
tribution is an indication of quality of workmanship (see Figure III-17A).

The results of similar calculations by O'Neill and Bailin are pre-
sented in Figure [II-18 for a 12-element Tchebyscheff array and a 12-element
cosine array. If the quality of workmanship corresponds to a standard devi-
ation of 0.001 inch, the results indicate that, out of 100 arrays, only 16 will
have sidelobes above the corresponding dashed curve.

It is general shop practice to reject work which does not fall within
a specified region of precision. Thus, the distribution of acteal dimensions
will be limited by tolerance specifiications and the normal distribution curve
will be replaced by a truncated normal distribution as shown in Figure [11-17B.
This distribution represents a more realistic approach to the problem.
Figure III-19 illustrates how the positions of the reference curves (the curves
above which 16 percent of the arrays will have sidelobes) at cartain points (9)
in the pattern vary with the prescribed tolerance. The v, represents the
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standard deviation for the distribution and a

.& is the point at which the dis-
tribution is truncated. bt

Although the data presented here hold only for special arrays, they

do give the designer a feeling for the problem and lead the way for further
investigations.

3.4.2 Long Arrays

Beam Position for Nonresonant Arrays

Watson suggests that the interelement spacing for a nonresonant
array be 4/9 )‘g or 5/9\ g for satisfactory input impedance and matched

condition in the guide; another criterion is given by equation (61).

Still another criterion, which has proved experimentally sound, is
to space the elements so that the main beam is at least one beamwidth off
the broadside position. The input VSWR for this condition is of the order of
1.1 (see Figure III-2, pagei53). Thus, if the array is long (that is, the beam
is narrow), it is possible to have the main beam close to broadside without
introducing serious reflections in the guide.

Lumped Array

‘ For very long arrays (hundreds of elements), the radiators may be
grouped together in batches of equal conductance (10 or 20 per group) in
order to simplify the manufacturing process. The effect of lumping the

elements will be small for long arrays since the slot conductances do not
vary rapidly along the array.

Bending

Highly directive arrays are necessarily quite long; for example, a
400-element X-band array having a beamwidth of 1/4 degree is approximately
30 feet long. The designer, therefore, is faced with the problem of having
to support the array in such a manner that it will not be distorted (thereby
changing the relative displacements of the elements and distorting the

pattern) when operating under various external loads or when supporting its
own weight.

An elementary analysis of the effect of phase variations due to bend-
ing on the pattern of a uniform array has been made for three conditions:2
1) exray rigidly supported at its ends, 2) array rigidly supported at 1/4 the
array length from the ends, and 3) array rigidly supported at the ends and
center (see Figure 11i-20), The array is assumed to execute simple harmonic
motion under variable loads. However, for the purposes of this analysis, it
is considered stationary at its maximum deflection, since the frequency of
vibration is much less than the electrical frequency and since the array will be

at or near its maximum deflection position for a relatively large portion of the
period of vibration.

65




e s .- . . - . . S 6 RN ORI R ST R

t Figure III-21 illustrates the pattern distortion for a continuous
; uniform array for condition (1). Ag is the amplitude of the vibration.

Figure III-22 illustrates condition (2) and Figure III-23, condition (3).

Pulse Length

The resolving power of a radar depends in part on the transmitted
pulse length; the shorter the pulse, the greater the range resolution. For
a long, end-fed linear slot array, a pulse front can be considered as arriv-
ing at the feed end-at t = 0, traveling down the guide, and arriving 2t the
load end at t = Tt’ the transit time. If the duration of the pulse, Tp’ is less

than T,, the array is never completely illuminated, and consequently, the !
aperture of the antenna is not being utilized efficiently. ,This analysis is ’
rather naive since 1) the pulse is di<torted in the guide and the front is not

defined, and 2) the individual slots have a transient build-up and decay time.

Ba\ilinZ gives an elementary solution to the pulse problem based on
the assumptions of a traveling pulse and a frequency invariant slot equiva-
lent circuit. Both assumptions are rather poor; nonetheless, the solution
offers a picture of the manner in which an antenna pattern builds up (and
decays) as the elements are progressively illuminated by the traveling pulse.
Figure IlI-24 is a plot of the pattern build-up as a function of time. Here to

is the time for the pulse front to travel between two adjacent slots at the
phase velocity for the dominant frequency component of the pulse. Thus, it
( would take a pulse at least ZTt(ZO to) long to approximate the steady-state

pattern for an instant. Bailin suggests 3Tt as the minimum practical pulse
length.

Manufacturing Tolerances

A somewhat questionable extrapolation of the data mentioned in the
discussion of Effects of Manufacturing Tolerances, page 64, seems to indi-
cate that tolerances become less critical for longer arrays. This result
may be justified as follows: 1) the random errors in the slot parameters,
which cause random radiation errors, are likely to average to a small value
for very long arrays; and 2) since conductances, and slot parameters, vary
slowly along the array for a long array, small random deviations from the
slot design values are not likely to be critical.

3.4.3 Terminations

Nonresonant Array

Matched loads are usually used to terminate a nonresonant array.
Watson, Fry and Goward, however, suggest the use of a group of resonantly
spaced slots at the end of the array as a termination which would not waste
power. These slots are separated from the main array by a length of wave-
guide of such length that the phase of the resonant section departs as little
N as possible fror.: that which would be obtained were it nonresonant. This
L’ scheme is not ve¢r ' useful since the designer has little control over the
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radiation from the load slots. They also suggest other arrangements, such
as terminating the nonresonant array by a shorting plate, with or wii hout
making allowance for the mismatch it causes near the end. The latter
technique assumes very low power at the load and can cause serious side-
lobe deterioration in arrays designed for -20 db or lower due to the iarge
mismatch at the termination.

Resonant Array

In a resonant shunt slot array, a short-circuit termination is usually
placed A /4 from the last slot; in a series slot array, a short circuit is

usually placed xg/z from the last slot. It is possible, however, in order to
br »adband the array, to place the shorting plate any odd multiple of Xg/4
from the last slot in the first instance and any multiple of A /2 in the

second. The optimum short-to-last-slot displacement can be determined

by a trial and error process. The extended short-circuit termination acts

as a stub which, for the series case, becomes inductive as the frequency
exceeds resonance; the parallel resonant circuit for the series slot becomes
capacitive as the frequency exceeds resonance. Thus, a compensating action
takes place which helps to improve the impedance bandwtdth of the array.
The length (n ) /2) of the stub determines the rate at which the stubreactance

changes with frequency. Stub lengths slightly off n) /2 or m\ /4 (m odd)
may be used to match out some discontinuities in the gulde thereby improv-
ing the input impedance at the design frequency.

3.4.4 Feed Systems: Linear and Two-dimensional Arrays

Waveguide linear slot arrays, for the most part, are fed from one
end as has been tacitly assumed throughout this report. Some investigators,
however, have suggested more elaboraie feeding arrangements which serve
to extend the impedance bandwidth of resonant arrays. The bandwidth of a
resonant array decreases as its length increases. Thus, if a long array is
divided into a number of equal smaller collinear arrays (sectxons§ each fed
separately, the sectioned array would have the bandwidth of one of its
sections. A simple example of the sectioned array is a resonant array fed
at its center. In this case, the two sections, one on each side of the feed,
are practically independent arrays internally; the power flows in opposite
directions in the respective sections, and each section is terminated by its

"own shorting plate. It should be apparent that the individual sections must

be resonant arrays; if the sections were of the traveling wave type, the

array would provide a split beam (the amount of split varying with frequency).
The feed-array junction may be a simgle tee, or a guide-to-guide coupling
through a slot as described by Watson 7,88, The type of coupling, series

or shunt, determines the relative orientation of slots in the sections: in the
series case, the coupling slet or tee junction looks like a series generator

in a transmission line and the fields on opposite sides of the generator are

in opposed phase; in the shunt case, the fields on opposite sides of the
equivalent generator are in phase.
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For arrays of many sections, a branching or corporate stru«::ture81
feeding system can be used. This arrangement may consist of a single
waveguide input which leads directly to a iee or two-way junction, each drm
of this junction leads to another junction, and so forth, the end result being

2™ outputs, where m is a positive integer. At each junction, the power
may divide equally between the two output arms; hence, the power level at
each of the final outputs would be equal. Since the path length from the
original input to each of the outputs can be made the same, uniformity of
phase can be preserved over a considerable range of operating frequencies.
Figure III-25A illustrates a branching feed pictorially.

Actually, a corporate structure feeding system need have neither
equal partition of power at each junction, nor be restricted to two-way junc-
tions. For a given number of outputs, for example, it is possible to have
a finite number of different power level combinaiions at the outputs. Figure
III-25B shows the five possible arrangements for a six-output system which
provide five different power level combinations. The path lengths can be
made equal with little difficulty in all five arrangements. It is also possible
to adjust the phases of the outputs by varying the path lengths slightly. If
the path differences are small (less than Xg/Z), the broadband properties of

the feed system will not be greatly impaired.

An alternative to the branching structure feed is provided by a series
system. In this scheme, the power is fed to a linear slot array, resonant
or nonresonant, in whick each slot couples to an auxiliary waveguide. The
slot couplings can be adjusted so that the outputs of the auxiliary guides have
any desired relative levels. (Watson gives adequate design data for slot-
coupled guides.) This arrangement offers more flexibility in the power out-
puts, but does not pcssess the broadband characteristic of the branching
structure.

A limiting case of the sectioned array is obtained when each section
contains only one radiator; for example, a horn, an open-ended waveguide,
or a slot in the end of a waveguide. Such an array has the advantages that
1) for an equal path length branching feed, the array is broadband and the
beam does not change direction with frequency, and 2) in certain cases,
mutual coupling beiween adjacent radiators can be reduced. (See discussion
of mutual coupling, section 3.4.7.)

Either the branching structure or the series system can be used to
feed an array of arrays (a two-dimensional array). The series system is
very convenient in this application. The linear arrays are cut in the
auxiliary guides; all the linear arrays can be made iden*ical, and the rela-
tive excitations of the individual linear arrays can be aujusted by the slot
coupling from the main feed guide. (See Figure 1I1-26.)
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3.4.5 Suppression of Second-Order Beams and Cross Polarizatien

Sgcond-Order Beamns

If the element spacing in a linear array of isotropic radiators is
greater than a wavelength, the radiation pattern will exhibit more than one
main beam. Generally more than one beam is undesirable and beams other

than the necessary or required beam are sometimes called second-order
beams.

Another type of second-order beam is encountered in the design of
longitudinal-displaced slot arrays. One usually designs such arrays on the
assumption that all the slots are on the same straight line. This assump-
tion, of course, is not quite correct since the array is, in fact, a two-
dimensional array due to the staggering of the slots about the waveguide
centerline. It is not surprising then that the three-dimensicnal pattern is
not a figure of revolution about the array axis as with the linear array, but
instead exhibits spurious lobes in planes containing the array axis (except
for that plane which is normal to the plane containing the slots). The con-
figuration of these second-order beams can be visualized by referring to the
three-dimensional sketch in Figure III-27A. The intensity of the second-
order beams is a function of the slot offset and, for practical arrays of
medium length, may be 10 percent or more of the main beam field strength.
Spurious lobes of this magnitude cannot be neglected in most applications.

Gruenbergz7 has made a thorough study of the second-order beam
problem in longitudinal shunt slot arrays. In his paper, he analyzes the
patterns of these arrays and also investigates methods of suppressing the
second-order beams. One proposal involves the use of a special type of wave-
guide which allows the slots to be pcsitioned in line as shown in Figure 1II-27B.
This method, although successful, is rather uneconomical. A simpler tech-
nique is to fit the staggered slot array with a parallel plate section and flared
horn as shown in Figure III-27C. If the width of the parallei plate region is
less than a half wavelength, only the two lowest modes will be propagated.

In this manner asymmetries in the field, caused by staggering of slots about
the centerline, will not appear at the throat of the horn systemm. Thus,
second-order beams resulting from slot offset will be effectively suppressed
provided that the length of the parallel-plate region is of the order of a
wavelength, The flared portion of the horn serves to match the parallel plate
region to space and can also be used to increase directivity in the transverse
plane.

The presence of the horn will affect the impedance characteristics28
of the array and will tend to narrow the bandwidth due to reflections from the
throat and the horn aperture. The use of horn systems with an exponential
taper has been suggested as a solution.

Cross Polarization

The electric vectors across inclined slots are rotated with respect
to the plane of principal polarization in such a manner that a quadrature
component of polarization is presernt in the array pattern. This cross-
polarized component can be detected by measuring a pattern with the
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transmitter polarization rotated 90 degrees from the direction of principal
polarization. The cross-polarized pattern for a linear array generally
consists of two or more lobes straddling the position of the main beam.
The intensity of the cross-polarized lobes depends on the magnitude of slot
inclination and the position of these lobes is a function of slot spacing.

The device employed to suppress cross polarization is similar to
that used for minimizing second-order beams, the parallel plate horn.
In this case, the width of the parallel plate region must be small enough
to suppress the propagation of the cross-polarized wave, that is, less than
a half wavelength.

3.4.6 Array Parameters

The measurement of antenna parameters in general is adequately
described elsewhere 4h; there are, however, certain effects peculiar to
the slot array which deserve special mention.

Pattern Measurements

Silver describes the manner in which the antenna pattern may be
measured. Since a linear array has a wide beam in the plane normal to its
axis and since the array is generally horizontal during a pattern measure-
ment, care snould be taken that the measured pattern is not distorted by
spurious radiation or reflections at scattered elevation angles. If displaced
slots are used in the array, patterns should be measured in the ¢ = 45° planes
to detect the second-order beams; and, if inclined slots are used, the
polarization of the transmitting antenna should be rotated 90 degrees and a
pattern measured to determine the amount of cross polarization present.

Gain Measurement and Calculation

The directive gain of a transmitting antenna referred to an ideal
isotropic radiator is given by

o = Peak power radiated/unit solid angle

(152)
total power radiated/4 w

directive gai

Silver describes experimental methods for measuring this quantity.

The gain of a linear nonsupergain array of isotropic radiators with
respect to the corresponding uniform array can be calculated from the follow-
ing relations.

N.
(E%‘ Ies1)?
G = —= s for 2N elements (153)

(%21 )2
N I
=0 k+1

70




. e e
,.,,‘.,4-.#-.(Nm»«:mmwm"lr;%aw"ﬁ ORI T T

oo gy 1

and

N2
(I, +2 ;l 1)

G = N
2 . 2
2N+1 (Io + 2 ki_:l I )

for 2N+1 elements (154)

where [ is the relative excitation of the kth element. The gain of the array,
of course, is modified by the gain of the individual elements. If the array is
short, it is difficult to take the element factor into account; if, however, the
array is highly directive and broadside, the gain of the array can be shown
to be proportional to the gain of the array with isotropic radiators.

The gain of an array of arrays in the xy-plane can be shown to be
proportional to the product of the gain of an array in the x-direction and the
gain of an array in the y-direction. It is assumed here that there is no
mutual interaction among arrays.

Efficiency

The radiation efficiency of an antenna is the ratio of radiated power
to input power. In a slot array, the power losses are due to the wall currents
ard, in the case of nonresonant arrays, power lost in the load.

The relative power into the load can be measured by the following
scheme. Insert a slotted line between the array and the load (denoted by L)
and feed the array through another slotted line (denoted by I). Measure the
VSWR's in both lines (pI and pL) and the maximum and minimum voltages in

both lines (Emax » B in and E___ E Lin ). Then
I I L L
E
netL max PL
10 log 5 = 20 log - 10 leg — (155)
net‘.I max; P

or

net power ratio (db) = maximum voitage ratio (db) - 1/2 VSWR ratio (db),

where

P =

- = )
net 1:’incident px'ef.lect.ed (156)

2 2.
K. (Ein -E) =K. Epax Ein

However, there is no way to measure the wall current izR loss since

this loss cannot be separated from the power radiated by the siots. It should

be noted that the izR loss for the slotted guide is not the same as the loss for
the guide before the slots are cut, since the slots have an effect on the wall
currents.
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Various schemes for measuring radiation efficienc:y58 have been
proposed but all are limited in their application and are rather inaccurate.

The radiation efficiency is increased, however, when iZR loss is decreased
by increasing the wall conductance and, for nonresonant arrays, when the
power into the load is decreased.

Another efficiency which can be defined for an antenna is the aper-
ture efficiency. The array of equally spaced elements which affords the

maximum gain is the uniform broadside array (Go = E.?l , where N = number

of elements and d = interelement spacing). If the array has a gain less than
Go, the aperture is not being used as efficiently as it might be to provide

gain. Thus, the ratio of the array gain and C'o is a measure of aperture
efficiency. In practice, however, gain may be sacrificed to shape the beam
or reduce sidelobes.

Input Impedance and VSWR

The input impedance of an array can be measured by slotted line
techniques (section 2.2.2).The voltage minimum position is measured with
a shorting plate terminating the slotted line and then the VSWR and minimum
position are measured with the array terminating the slotted line44 Often
design specifications require only the VSWR to be less than a certain value.

Power-Handling Capacity

The power-handling capacity of a waveguide slot array is generally
limited by arcing in the slot and, for a nonresonant array, by power break-
down in the terminating load.

The "theoretical" power-handling capacity cof a slot can be calculated
as follows: The radiation admittance, Ys, of a slot radiating on one side of

"an infinite ground plane is related to the radiation impedance, Zw' of a wire
dipole by Babinet's Principle? by

ZZw ZZW
Y =G_+jB_= = (157)
s 8 s p./e (1 ZOn)Z

The power radiated into half space is

2 2
V_G V_ R p
P mMYs _ In"w (158)
2 (12011)Z

where Vm is the maximum voltage across the slot. If the field across the

slot is uniform,
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V_=d-E_ (159)

where d is the slot width and Em the peak field intensity in the slot. Assum-
ing a breakdown strength of E__ = 30, 000 volts/cm = 76, 200 volts /inch and

R = 73.2 ohms (References 32 and 48), the power-handling capacity of the
slot is

2 2 i
p - (16, ?200) x); 3:2d . .98 a® megawatts (160)
120 »

Thus, the slot width determines power breakdown.

The value of P given above probably cannot be obtained in practice.
However, rounding and filleting sharp edges and corners will increase the
power-handling capacity.

If all of space were replaced by a dielectric, YS would increase and

P would also increase. On the other hand, if the slot is covered by a thin
sheet of dielectric or if the slot is filled with dielectric, the breakdown power
will decrease due to the leakage paths provided by the surface of the dielec-
tric. The latter situation is the one that occurs in practice. Thus, a dielec-

tric cover or load will generally decrease the power-handling capacity of a
slot.

3

Bandwidth

The bandwidth of a slot array can be defined for one of a number of
array parameters. For example, the pattern bandwidth is the region of fre-
quencies for which the radiation pattern meets specifications. Methods of
increasing bandwidth have been discussed.
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3.4.7 Mutual Coupling in Linear aud Planar Arrays

Throughout this report various aspects of the mutual coupling prob-
lem have been mentioned. Mutual coupling means the correlation between
the excitation of a slot and the excitations of its neighbors due to fields in
the space external to the guide. The following discussion purposes to inte-
grate and expand the problem.

Empirical Techniques

In linear arrays employing essentially collinear elements (for
example, lengitudinally displaced or series inclined slois), it is general
practice to neglect mutual coupling, or to assume the slot conductance for
an element in the array is the same as the single slot conductance. And, in
linear arrays employing essentially parallel side-by-side elements, (edge
or transverse series slots), it is the general practice for long arrays to assume
the slot conductance for an element in the array is equal to the average conduc-
tance of a large number of similar slots (the incremental conductance). To

™

73

pery.



e @WW”’Wmmlw SPLC YIRS g, o

i
F

RPN PN O SV il L R, ST L T

reduce the mutual coupling among essentially parallel side-by-side slots,
baffles (horns or auxiliary guides) are sometimes used to isolate the slots
(see discussicn of experimental and design data, section 2. 3). In these
arrangements mutual coupling is also neglected; that is, the conductance
of the slot and baffie as an array element is assumed to be the same as the
conductance of a single slot and baffle.

In planar arrays of similar slots, the slots in a row parallel to one
dimension will all be essentially parallel side-by-side while slots in a row
parallel to the other dimension will all be essentially collinear (assuming a /
rectangular array). The general practice in designing arrays of arrays
using slots (actually there are few successful ones) is to construct a number
of linear arrays which correspond to the rows for which the mutual coupling
is strongest and then to array these linear arrays to form the two-dimensional
array. The reason for this procedure is that schemes have been devised for
designing linear arrays in the presence of mutual coupling and, if these linear
arrays can be made to work, mutual coupling is neglectzd in constructing the
array of arrays. This approach does not take intc account the cffect of
echelon (or staggered parallel) slots. Baffle arrangements are sometimes
erected between adjacent arrays to decrease the coupling. These baffles may
take the form of parallel plate horns or of quarter-wave troughs in the ground
plane which act as chokes.

Another technique, which is applicable to either linear or two-
dimensional arrays with slightly tapered aperture distributions, is based on
an argament similar to that for the use of incremental conductance. If the
array is large compared with the wavelength (in both dimensions for a planar
array), the interelement spacing is approximately kg/z, and the spacing be-

tween lumped elements on the equivalent transmission is approximately )‘g/ 2;

then the array can be designed using only single slot conductances. The justi-
fication for this maneuver is that most of the elements (those near the center)
will have the same environment and wiil therefore have their input impedances
changed by the same factor. The few elements near the edges do not con-
tribute much to the radiation pattern under the present assumptions. Since

the radiation pattern is determined by the relative values of element excitation,
the patiern will be a fairly good approximation to the required pattern. How-
ever, the array will be mismatched at its input. This mismatch can be can-
celled out it the array is to be used for a narrow band of frequencies.

Although some of the schemes for coping with the mutual coupling
problem are reasonably satisfactory in some instances, they are by no means
exact or universal. For example, the reason for assuming negligible mutual
coupling among collinear slots is that the far field pattern for an infinitely
thin slot in an infinite ground plane has a zero in the collinear direction. In
a practical array, however, adjacent slots are in the near field, the slot has
a finite width, and ground plane is not infinite. Furthermore, the slots are
not collinear; the lougitudinal-displaced slots are staggered about the wave-
guide ceriterline and the inclined-series slots on the broad face are inclined
to the centerline. However, an experimental 'mvesi’.igationzZ has shown that
neglecting mutual coupling in linear longitudinal shunt slot arrays is a valid
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! t assumption in most cases. For an array of slots in which the conductances
are less than 0.1, the ratio of the voltage across a slot in the presence of
mutual coupling, Vs, to the voltage for no mutual coupling, Vo’ is

\'s
s

o

>0.97 (161)

AT TR T

when only one neighbor,. xg/z away, is taken into account, and

v
s

Vo

> 0.96 (162)

for both adjacent neighbors. However, for slot conductances of the order of
1.0, considering one neighbor,

v
s

(o]

=0.92 (163)

In addition to the amplitude variations indicated, the rhutual coupling
produces phase variations which, in this case, are small. The above data
R are for slots in a waveguide without the benefit of an auxiliary ground plane.
(:‘ Because the slot spacing is approximately xg/z, the data hold for arrays

near broadside only. Since, for reasonably large arrays, the slot conduc-
tances are generally less than 0.1 and inaccuracies in manufacture are of

the same order as the effects of mutual coupling, neglecting mutual coupling
in these arrays is probably a valid assumption. On the other hand, for
arrays of very few slots in which each slot couples a large portion of the
incident power, the mutual effects will probably distort the radiation pattern
and corrections should be made for coupling by near neighbors. If the mutual
coupling is not too serious, it may be possible to over-design the array to
allow for sidelobe and beamwidth deterioration.
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It should be emphasized here that most of the schemes for handling
mutual coupling are applicable only for aperture distributions close to uni-
form and beam positions near broadside. For shaped beam antennas (which
are usually near endfire), the possibility of using trapped wave antennas
(corrugated surface, dielectric, and traveling wave slot antennas) shouid be
investigated.

An Analysis of the Problem

In light of the difficulties encountered in designing waveguide-fed
slot arrays in the presence of mutual coupling, it is interesting to note
that corresponding dipole arrays can and have been designed in a straight-
forward manner. (See References 9, 35,and 38.) Examination of the differ-
ences between an array of dipoles fed from a transmission line and an array
c of slots coupled to a waveguide may resolve this apparent paradox.
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In circuit theory, the mutual impedance 6f two coupled circuits is

defined as the negative of the ratio of the emf V21 induced in circuit 2 by a

current Il flowing in circuit 1 with circuit 2 open. This concept is essen-

tially what is meant by the mutual impedance of two coupled antennas. The
self-impedance le of an antenna is the impedance seen at its terminals

when no other antennas or reflecting surfaces are in the neighborhood. The
impedance relations for an array of n-driven elements are

<
"

1 IIZ11+IZZIZ+I Z +...+InZ

3713 In

<
1]
[ o]
N
+
=t
N

2 121t 2,4 132, + .04 2,

v3=IIZ3I+IZZ + 1,2 +...+InZ

32 ¥ 13233 3n (164)
VoELZ 41,2 Ll kD 2 /
where
vV, = terminal voltage of the nt element
I =terminal current of the ntl: element

Zln= mutual impedance between element 1 and the nth element

z = self-impedance of the nth zlement.

The driving point or terminal impedance of one of the elements, say
element 1, .s then

v

1 I I L
zl:'i'l'=zll+il_zl7-+fl_zl3+"'+q Zln (165)

The number and spacing of the elements and their excitation cur- -
rents are determined by the required pattern. If the elements are to be
resonant, for example, their dimensions and self-impedances are deter-
mined. Theoretical equations and curves have been derived for the mutual
impedances of the various types of dipole mutual coupling (collinear,
parallel side-by-side and echelon) as a function of spacing. Thus, the
driving point impedance, Zn’ for any element can be evaluated, If the termi-

nals of the elements are now coupled to the feed transmission line through a
transformer, the voltage across Zn can be adjusted (independently of Z"1 to

give the required In. Thus, the design procedure for the dipole array,
though tedious for n large is not difficult.
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For an array of slots fed directly from a waveguide, the problem
is different. For the sake-of the analogy, the self-impedance of the slot is
said to be the value given by Babinet's Principle for the center-fed slot

in an infinite plane (see page 4 ). The network which ccuples the slot to
the guide is determined by the orientation of the slot in the guide. However,
unlike the case of the dipole array, changing the value of the coupling net-
work (or transformer) also changes the value of self-impedance and mutual
impedance, The resonant length of a slot depends on its position in the
guide, its impedance and radiation characteristics depend on the shape of
the ground plane it sees, and the mutual impedance at a slot depends on its
orientation with respect to its neighbors. In other words, the driving point
impedance and the transformer coupling are not independent values. It is
true that a waveguide-fed slot array might be designed and built using the
single slot impedances {self-impedances), and then empirical corrections
could be made. A probe might be used to measure the amplitude and phase
distribution in the aperture and then the orientation and length of successive
slots could be corrected. A correction in one slot, however, will change
the excitation of most of the other slots, not only because of the mutual
coupling external to the guide but also due to coupling within the guide. Un-
fortunately, as the process continues from slot to slot, there is no guarantee
that it will be convergent. Still this technique might be feasible for arrays

of less than five elements, although anyone who has tried it for longer arrays
will attest to its futility.

The conclusion that one must reach is that an array of slots fed
directly from a feed waveguide cannot be designed analytically if mutual
coupling is present. This result is based on the uncertain or slow conver-

gence of the iterative synthesis process and the lack of a solution for the
internal-external coupling problem.

The above argument is based on a paper by Ehrlich and Curtis.23
The solution which they suggest is the use of a waveguide and slot arrange-
ment which will result in an equivalent circuit similar to that for the dipole
array. The proposed array (which can be one-~ or two-dimensional) must
have the following characteristics: 1) the slots terminate an equivalent two-
wire line, 2) the iransformer between the slot driving point impedance and
the line is known, and 3) adjustment of the slot internal coupling does not
alter the external array geometry. Such an array might consist cf stub arms
(auxiliary waveguides), series or shunt coupled by a slot to a main feed
guide. The stubs are approximately one wavelength long and capped with an
end plate containing a resonant slot. Each stub is equipped with a matching
iris so that the coupling slot sees a match,and data for a slot feeding a

matched guide can be used. This two-dimensional shunt-stub arm array is
shown in Figure I11-28.

Ehrlich and Curtis also present experimental datz in their paper
for mutual admittance between parallel side-by-side and echelon coupled
slots. The data show that Babinet's Principle can be used to transform
mutual impedance data for dipoles to equivalent data for slots. Thus, the
design of the proposed slot array would be no more difficult than the design
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of a similar dipole array. A comparison of the slot coupling data with the
theoretical coupling for dipoles is presented in Figures III-29 through
III-32. The discrepancies of the phase curves are attributed to the fact
that the dipole data are for a half-wave dipole and the measured slots were
resonant (slightly different than a half-wavelength long).

3.4.8 Some Constructed Arrays

The excitaiion coeificients of 2 17-element linear array which
would produce a power pattern proportional to cscZ 0 cosl/2 0 from 3 de-
grees to 48 degrees were determined by a Fourier series method/4 The
voltage paitern was assurned real and symmetrical about the normal to the
array, and therefore, the excitation coefficients were real and symmetri-
cal about the center of the array. The array was designed for resonant
spacing and used resonant longitudinal shunt slots. The measured input
VSWR at the design frequency (9910 mc/s) was 1.0 (the design value) and
the radiation pattern at the design frequency is shown in Figure III-33.
There is less than 3-db deviation from the theoretical curve from 20 de-
grees to 55 degrees on both sides of the normal to the array. Machining
tolerances are responsible in part for the departure of the radiation patterns
from the theoretical curve because of the large (1870:1) range of radiated
powers required from the elements.

The excitation coefficients of a 15-element linear array were de-
termined by use of the Potential Analog Computer.’9 This array was de-
signed to have an asymmetrical radiation pattern which was to follow the

curve csc20 cotl/ZO from 6 degrees to 60 degrees. The array used non-
resonant longitudinal shunt slots with resonant spacing. The radiation
pattern (Figure I1II-34) indicates a variation of less than 3 db from 1.5 de-
grees to 61 degrees. The sidelobes were found to be below 21 db and the
measured input VSWR was 1.C (the design value).

A 24-element linear nonresonant array of longitudinal shunt slots
with a 22-inch aperture was designed for a -30 db sidelobe level and a
beamwidth of 3.67 degrees. The design irequency was 9375 mc/s, at
which frequency the beam position was chosen to be 2 degrees from the nor-
mal and tilted away from the input.

Tests of the linear array (shown in Figure III-35) were very satis-
factory. The sidelobe level measured in a plane through the axis of the array
and perpendicular to the waveguide face containing the slots is -28 db at the
design frequency, and is lower than -26 db over the 15-percent band included
between 8500 and 10,000 mc/s (Figure III-36). Sidelobes of -19 to -22 db
exist outside the principal planes of the array. These lobes were found at
+45 degrees in planes passing through the axis of the array and tilted approxi-
mately t30 degrees from broadside. These lobes are caused by the slot
staggering about the centerline of the broad face of the waveguide (see dis-
cussion of second-order beams, section 3. 4.5). Restrictive vanes placed on the
guide reduced these lobes with little effect on the rest of the pattera. How-
ever, if the array is to be used as a primary feed for a reflector, the vanes
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are not necessary because the gain of the reflector reduces the magnitude
of the off-axis lobes to below thz level of the rest of the sidelobes. The
beamwidth of the array varies from 4.5 degrees to 3.4 degrees over the
band because the antenna aperture, measured in wavelengths, increases
with frequency. The measured beamwidth at the design frequency was

3.70 degrees. The pattern of the array at the design frequency is shown

in Figure III-36. The beam position of the array as a function of frequen-
cy is given by equation (60). The measured input VSWR is plotted in Figure
III-37 on which the cross gives the calculated VSWR at the design frequency.
The low values of VSWR extend well beyond the limits of the graph. The
efficiency of the array is greater than 70 percent from 9210 to 9730 mc/s
and is nearly 80 percent at the design frequency. Most of this lost power is
dissipated in the matched termination. Since fulfillment of theoretical pat-
tern requirements of this array was more important than efficiency, the
conductance of the last slot was chosen to be 0.05. If the array had been de-
signed with a conductance of 0. 10 for the last slot, the conductances of all
the succeeding slots would have been increased and the antenna would have
had an efficiency close to 90 percent with only a slight effect upon the pat-
tern.

A 24-element longitudinal shunt slot linear array designed for a
sidelobe level of -40 db was designed and built. The measured sidelobe level
of the array was below -34 db at 9375 mc/s (the design frequency). The ob-
served beamwidth was 4. 3 degrees as compared with the theoretical value of
4.07. The efficiency of this array was somewhat higher than that of the
previous 24-element array because the array was designed with higher slot
conductances.

The results of measurements on three 144-element longitudinal
shunt slot linear arrays designed for -40 db sidelobe level show that the
beamwidth is the same as the design value (0. 71 degree). The maximum
sidelobe level is -29 db exclusive of the secondary lobes produced by the slot
offset from the waveguide centerline. Restrictive horns caused a reduction
of the secondary beams and a rise in some of the cther sidelobes to about
-28 db.

A 66-clement nonresonant edge slot array with a flared parallel
plate horn was designed using incremental conductances. The excitation
coefficients were calculated by Taylor's method80 for narrow beam and low
sidelobe patterns. A Dclph-Tchebyscheff distribution was not used because
it was felt that the strong excitation at the ends of the array would lead to
spurious sidelobes due to diffraction effects at the end of the horn. The de-
sign beamwidth was 1.6 degrees and the design sidelobe level -25 db. The
main beam position was i.5 degrees. The measured pattern showed a side-
lobe level of -22 db and a beamwidth of approximately 1. 6 degrees.

A 204-element nonresonant edge slot array at X-band was designed
with Taylor's narrow beam and low sidelobe level distribution. The calcula-
tion of the excitation coefficients was made for n = 5 and proved to be a
relatively simple calculation. The value of n was chosen to be 5 because it
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was found that larger values would change the excitation coefficients by
amounts so small that they would exceed the manufacturing tolerances. The
design beamwidth was 0.4 degree and the design sidelobe level was -25 db.
The main beam was 2 degrees off broadside., Measured patterns shcwed a
sidelobe level of ~-24 db and beamwidth of 0.4 degree. The pattern was very
close to the calculated pattern. Figure III-38 is a pattern of a 30-element i
test array designed with the same distribution as the 204-element array. The

slot conductances were determined by the incremental conductance method.
One of the major difficulties encountered was the maiter of supporting the
array since it was some 16 feet long.
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A 64-element, 3000-mc sectioned array is described in a French
journalf15 Edge slots were used and their conductances measured by an
incremental conductance technique. The aim was to build a wide band broad-
side array to feed a cylindrical reflector. A two- and a four-section array
were built. The sections were fed by a corporate structure feed system.

A linear array of series slots in the broad face has been built with
a horn for suppression of cross polarization and increased directivity in the
transverse piane37. A Dolph distribution was employed to obtain a design
sidelobe level of -32 db. The measured pattern indicated a sidelobe level of
about -31 db. The array was centerfed by a resonant slat-coupled series-T
junction. The slots were measured at X-band and the dimensions scaled to

L-band for the array shown in Figure III-39, (Several of the slots in the
C picture are covered by masking tape. )

R T o T Tt

A l6-element linear array of inclined dumbbell slots in the broad
face of a rectangular outer, circular inner conductor TEM line?7 is shown
in Figure IlI-40. The array was designed with a -30 db Tchebyscheff dis-
tribution, and the beam position was chosen to be 10 degrees off broadside
at the design frequency of 3000 mc. The measured input VSWE. at 3000 mc
was 1. 37 and the measured sidelobe level -22 db. The sidelobe error is

attributed to the effects of machining tolerances and the possibility of insuf-
ficiently accurate slot data.

An array.of 13 transverse slots on a circular cylinder of finite
length9° is shown in Figure III-41. Each slot is fed by a separate rectangu-
lar X-band waveguide. THBe 13 guides are slot coupled to a main feed guide
in the shape of a circular arc. The slots are cut in the narrow face of the
guide and are dumbbell loaded. Since the slots as shown will not radiate, a
metal rod was inserted in the vicinity of the slots to excite them. The cylin-
der is 12 wavelengths in circumference and 4 feet long. A comparison of
measured and calculated patterns is shown in Figure IlI-42. The poor side-
lobe correlation is due to the extreme sensitivity of the rod excited slots to
mechanical deformation, and to the finite cylinder length to a lesser degree.

A two-dimensional array of series inclined slots designed by L. A.
Kurtz is pictured in Figure II[-26. Mutual coupling effects were purposely
neglected in the design. Each lincar array is fed by a series inclined slot
e in the traveling wave feed guide. The linear arrays as well as the feed array
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were designed to give a uuiire. o Gistribution. The measured E-plane and
H-plane patterns indicate excellent correlation with the sin u/u pattern.
The pattern in the direction of strongest mutual coupling suffered from
some deterioration in the remote sidelobes although the maximum (first)
sidelobe was about 13 db down from the peak of the main beam.

81



APPENDIX A

AN EXAMPLE OF THE ECONOMY INVOLVED IN USING . :
OPTIMUM PHASE DESIGN FOR ARRAY SYNTHESIS. »

Let the amplitude variation of the required pattern, S(y whe
¥ =kd cos 0, be that sketched in Figure Al-1. The circle diagrs . =1
senting S(¥) is also shown in the figure. Then the analytic expr .iion

S(¥) is
S(¥)=r + eIV (166)
and the power pattern is
SS*N)=r2+ 2rcos ¥ + 1 {167)

From equation (166) it can be seen that the required pattern wi s¢ prn-
duced exactly by two elements, Ao and Al’ having exr~itations - i, i¢-

spectively. On the other hand, if the power pattern (167) were : ‘en and
S(¥) were assumed real, that is, if

N-1
S(ﬁ)=11+rz+2rcosv =Z A cosny (168)

n=0

then,

14 o2 f’"‘J 2t , (169)

l+—-[ ¢;¥.  3nydy

The radical in the integrand of equation (169) can be :>andc i1 an infinite
Fourier cosine series:

ar _ 2
Jl+l—::z- cosy =a  +a,cosy+a,cos 7y 3¢ Vv t... (170)
The facts that the expansion of the radical includes ny term for all n
and that the radical is multiplied by cos n¥ in the intc~ 1r 5 (169) indicate
that An exists for all n. In other words, assumptionc - r | 3(y) forces
the use of an array with an infinite number of element: . { >iuce exactly a
pattern which can be produced exactly by an array of or , . - :lements by

allowing the phase of S(¥ ) to take on the optimum value - ..n by equation
(166).

*This example was suggested to the authors by T. T. T 1 .
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: APPENDIX B
JF NT VALUES FOR DOLPH,TSCHEBYSCHEFF ARRAYS

TABLE OF CONTENTS

Number of Sidelobe Level
Elements (decibels down)
4 20
6 30
7 20
8 28, 30, 32

10 25
12 20, 30, 40
16 32, 36
18 25
24 20, 30, 40
33 25
38 30
40 36
48 20, 30, 40
66 35

( 144 40
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4 Elements
20 db

I
6. 34467
3. 65532
1.54043

10
0.93255

h"‘NN"‘lﬂ'
(o]
"

6 Elements
30 db

Iy

15. 97290
10. 92129
4,.72224

1. 364048

31. 62278
0.83991

R"ON Wi | ®

7 Elements
20 db

I

3.76820
3.45054
2.61588
2.04944

1.12704

10
0.95082
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8 Elements

28 db 30 db 32 db
< hk Ik
1 9.411472 12.19580 15. 76045
2 7.753466 9.90250 12.61676
3 5.116790 6. 32654 7.809191
4 2. 837067 3.19794 3.624265
z = 1.160635 1.1806586 1.201956
r = 25.11887 31. 62278 39.81072
¥ = 0.862324 0.841612 0.822562
10 Elements
25 db

k I

| 5. 0500

2 4.54167

3 3. 64306

4 2.55344

5 1.99461

z, = 1. 07973575

r = 17.782794

) = 0. 904804 |

12 Elements ;
20 db 30 db 40 db

k I I L
1 2.09821 8.12761 29. 29670
2 1. 98542 7. 43902 25. 95992
3 1.77354 6. 20007 20. 21841
4 1.48752 4. 64892 13.57260
5 1.16013 3.06107 7.53420
6 1.49518 2.14609 3.41817
z, = 1.03725 1.07190 1.11826
r = 10 31.62278 100
& = 0.96428 0.85284 0.75976
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16:Elements

32 db 36 db
b I
7.81 13,19830
7.50 12.43593
6.73 11.01835
5.70 9.13899
4,55 7.04060
3,37 4.97075
2.28 3.13961
1.86 2.15322
1. 042880 1.0524605
39.81072  63.09574
0. 840 0.799355

18 Elements
25 db
I

2.74792
2. 66515
2. 50596
2. 28072
2. 00480
1.69616
1. 37397
1. 05695
1. 45099

= 1.02213846

= 17.782794

= 0.921175

LR ot
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24 Elements

20 db
I

1.01822
1.00528
0.97977
0. 94242
. 89428
. 83671
. 77128
. 699775
. 62406
. 54608
0. 46775
1.21436

1. 0084801

10
0. 94044

0OOO000O0O

33 Elements

VO~NONBWNN~O| ®

N
o
"

e ]
nu

25 db

Iy

1.4730106
1. 4666424
1. 4476607
1. 4164483
1. 3736270
1. 3200464
1.2567533
1.1849740
1. 1060732
1. 0215286
0. 9328810
0.8417027
0. 7495607
0. 6579695
0. 5683664
0. 4820701
1. 2199843

1.0062314

17.782794
0.919856

30 db 40 db
I I
3.9901 14.5769
3. 9080 14,1372
3.7478 13. 3433
3.5173 12. 2159
3.2274 10. 8317
2.8918 9. 2731
2.5256 7. 62242
2. 1444 6.07028
1.7643 4.58229
1.399] 3. 26402
1.0614 2.15811
1. 4504 1.83112
1.016298 1.026655

31.62278 100
0.87134 0.77191

87




- K.:x,;vvg«,fg.‘(ﬁ ,3-", T AT T

% 38 Elements 40 Elements
L 30 db 36 db
&
L
L k L L3 "
£ 1 2.49199 1 5.182363
* 2 2.47178 2 5. 135927
: 3 2.43221 3 5. 044040
¢ 4 2. 37382 4 4.908665
1 5 2.29722 5 4.732775
; 6 2. 20441 6 4.520148
i 7 2.09746 7 4.275316
: 8 1.97766 8 4.003356
L 9 1.84679 9 3.709761
i 10 1.70799 10 3. 400315
¥ 11 1.56401 11 3.080970
s 12 1.41622 12 2: 757645
r 13 1.26664 13 2.436042
' 14 1.11879 14 2. 121467
! 15 0.97510 15 1.818732
: 16 0.83613 16 1.532093
f 17 0.70359 17 1.265176
O 18 0.57550 18 1. 020841
19 1.26063 19 0.801212
20 1. 348897
z, = 1.0062895 z, = 1. 00770345
r = 31.62278 r = 63.09574
& =  0.87665 = 0.81739
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48 Elements

20 db

I
0.49995
0.49842
0.49536
0. 49080
0.48478
0.47732
0. 46849
0. 45834
0. 44694
0. 43437
0.42071
0. 40606
0. 39051
0.37416
0. 35712
0. 33949
0.32139
0. 30293
0. 28423
0. 26538
0. 24651
0.22772
0.20911
1.09993

1. 002629

10
0.85821

30 db

I

1.96412
1. 95430
1.93479
1.90581
1.86770
1.82092
1.76601
1.70361
1.63444
1.55927
I.47895
1. 39437
1. 30643
1.21606
1.12418
1.03173
0.93958
0.84859
0.75957
0. 67325
0.59032
0.51138
0.43693
1. 20045

1. 003895

31. 62278
0.87718

40 db

I

7.19977
7.14943
7.04964
6.90211
6.70939
6.47475
6.20216
5.89614
5.56169
5.20417
4.82916
4. 44232
4.04933
3. 65569
3.26668
2.88717
2.52162
2.17395
1.84749
1.54493
1.26832
1.01905
0.79787
1. 34718

1. 006361

100
0. 78280
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66 Elements

35 db
k Ik
1 2. 3787
2 z. 72927
3 2.71214
2 2. 68661
5 2. 65286
6 2. 61117
7 2. 56184
8 2. 50525
9 2. 44182
10 2. 38875
11 2. 29635
12 2.21538
13 2. 12967
14 2. 03985
15 1. 94653
16 1.85035
17 1. 75197
18 1. 65202
19 1.55115
20 1. 45000
21 1. 34917
22 1. 24926
23 1.15083
24 1.07115
25 0. 96050
26 G. 86955
27 0.78198
28 0. 69815
29 0. 61837
30 0. 54293
31 0. 47203
32 0. 40585
33 1. 18698
z, = 1. 00264
r = 56.23413
¥ - 0.83149
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; 144 Elements
4 40 db
% k I k I
: 1 2.3727 39 1.3103
¢ 2 2.3709 40 1.2676
. 3 2.3673 41 1.2249
: 4 2. 3619 42 1.1824
¥ 5 2. 3548 43 1. 1400
v 6 2. 3458 44 1.0989
¥ 7 2. 3351 45 1.0562
i 8 2.3226 46 1.0148
; 9 2. 3085 47 0.97385
? 10 2.2927 48 0.93336
: 11 2.2752 49 0.89339
3 12 2.256i 50  0.85398
1 13 2.2355 51 0.81518
; 14 2.2132 52 0.77704
L 15 2.1895 53 0.73959
y 16 2.1643 54 0.70288
17 2.1377 55 0. 66694
18 2.1097 56 0.63180
19 2.0804 57 0.59749
20 2. 0499 58 0. 56405
21 2.0181 59 0.53150
22 1.9852 60 0.49987
23 1.9512 61 0.46918
24 1.9161 62 0.43943
25 1.8801 63 0.41065
26 1.8432 64 0. 38285
27 1. 8055 65 0. 35605
28 1.7669 66 0. 33024
29 1.7276 67 0. 30544
30 1. 6877 68 0.28165
31 1.6472 69 0. 25886
32 1. 6062 70 0. 23708
33 1.5647 71 0.21631
34 1.5229 72 1.1031
35 1.4807 Z, = 1.000687
36 1.4383 . = 100
37 1. 3957 Y
38 1.3531 = 0.78938
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Two-Dimensional Slot Array

Figure III-26.




B) In-Line Shunt Slot Array

C) Parallel Plate Horn
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Suppression of Second-Order Beams

Figure III-27.
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Figure III-39. Array of Inclined Series Slots with Flared Horn 190
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